
Software Verification and Analysis

Siddhant Chaudhary

January 2022

Abstract

These are some supplementary notes which I made during a course I took in CMI.
There was no reference book as such, but I took some reference from the book Software
Verification and Analysis by Janusz Laski and William Stanley.

Contents

1 Syntax and Semantics of our language 2
1.1 The Syntax Grammar . 2

1.1.1 Arithmetic and Boolean Expressions. 2
1.1.2 Commands. 2

1.2 Structural Operational Semantics (SOS). 2
1.2.1 Environments. 3
1.2.2 Evaluation. 3
1.2.3 Configurations. 3
1.2.4 Defining the SOS. 4
1.2.5 Derivation Sequences. 4
1.2.6 Specification of Errors. 4

2 Logic Fundamentals 5
2.1 Propositional Logic . 5

2.1.1 Syntax. 5
2.1.2 Semantics. 5

2.2 Predicate Logic . 6
2.2.1 Syntax. 6
2.2.2 Semantics. 6

2.3 Formal reasoning of programs: Hoare Logic 7
2.3.1 Hoare Triples. 7
2.3.2 Inference rules for Hoare Triples. 7
2.3.3 Automation via Static Single Assignment (SSA). 9
2.3.4 Conditional Forward Rule. 10
2.3.5 SSA for programs with conditional commands. 10
2.3.6 Handling loops. 10
2.3.7 Inductive Loop Invariants for Transition Systems. 11

3 Lattices and Fixed Point Theory 11
3.1 Overview . 11

3.1.1 Total and Partial Orders. 11
3.1.2 Lattices. 11
3.1.3 Knaster-Tarski Theorem. 12
3.1.4 Continuous Functions and Kleene’s Fixed Point Theorem. 13

January 2022

1 Syntax and Semantics of our language Sunday 17th July, 2022, 09:16

4 Abstract Interpretation 14
4.1 Abstractions . 14

4.1.1 Introduction. 14
4.1.2 Galois Connections. 15
4.1.3 Ingredients of Abstract Interpretation for Interval Domains. 15

1. Syntax and Semantics of our language

1.1 The Syntax Grammar

In this section, we will mention the syntax of the programming language that we will
analyze. This syntax will be given by a CFG.

1.1.1 Arithmetic and Boolean Expressions. Let B = {true, false} denote the set
of boolean constants. Let Z denote the usual set of integers. Let V = {x0, y, z, x0, x1, ...}
be the set of variables. Next, we will define a grammar which will have these elements as
terminals.

Let the set of arithmetic expressions, denoted by AEXP, be the language defined by the
following grammar.

α := x | n | (α1 + α2) | (α1 − α2) | (α1 ∗ α2) | α1 ÷ α2

Here, x ∈ V is some variable, n ∈ Z is an integer, and α1, α2 are any elements in AEXP.

Similarly, we define the set of boolean expressions, denoted by BEXP, to be the language
defined by the following grammar.

β := x | b | α1 = α2 | α1 ≤ α2 | (notβ) | (β1 orβ2) | (β1 andβ2)

Above, x ∈ V is any variable, b ∈ B is a boolean constant, and again α1, α2 are any
elements in BEXP.

1.1.2 Commands. Let the set of commands, denoted by COM, by the language defined
by the following grammar.

COM :: = skip

| x := α

| y := β

| COM1; COM2

| if β then COM1 else COM2 end if

| while β do COM endwhile

Above, x, y ∈ V are any variables. The first two statements are just like assignments in the
usual programming languages. The third command is used to write multiple commands
in the same program; this is just like Java/C++ syntax. The last two commands are the
usual if-then-else and while constructs.

1.2 Structural Operational Semantics (SOS).

In this section, we will introduce a set of rules which will specify the execution semantics
of our programming language.

2

1 Syntax and Semantics of our language Sunday 17th July, 2022, 09:16

1.2.1 Environments. First, we define the notion of an environment.

Definition 1.1. Consider a program with variables in the set V and a value domain V al
(for example, V al = Z ∪B).

• An environment is a function σ : V → V al.
• The substitution operation σ[v/x] maps an environment σ to an environment σ′,
where σ′ is defined as follows.

σ′(y) =

{
v , if y = x

σ(y) , otherwise

• The set of all possible environments for a program is denoted by ENV.

In this terminology, one can also define initial values in a program. At an entry point in
a program, variables can either have arbitrary values (for instance in many languages, an
uninitialized string is often the empty string). Another way of specifiying initial values
is by introducing a new value Undef ∈ V al (which represents undefined), and we let the
initial environment be the map x 7→ Undef .

1.2.2 Evaluation. We now define the evaluation semantics of our language.

Definition 1.2. Let σ be any environment. Let α1, α2 be arithmetic expressions (i.e
members of AEXP). Let β, β1, β2 be arbitrary boolean expressions (i.e members of BEXP).
Let x ∈ V be a variable, n ∈ Z be an integer and b ∈ B be a boolean. We define a function
eval : EXP× EXP → Z ∪B, where EXP = AEXP ∪ BEXP inductively as follows.
(1) For ▷◁∈ {+,−, ∗,÷,≤,=}, we define

eval(α1 ▷◁ α2, σ) = eval(α1, σ) ▷◁ eval(α2, σ)

(2) For ∆ ∈ {or,and}, we define

eval(β1∆β2, σ) = eval(β1, σ)∆ eval(β2, σ)

(3) eval(notβ, σ) = ¬eval(β, σ)
(4) eval(x, σ) = σ(x)
(5) eval(n, σ) = n
(6) eval(b, σ) = b

Using the above definition, any expression (arithmetic or boolean) can be reduced to a
value in Z ∪B.

1.2.3 Configurations. Formally, a configuration γ is a pair ⟨S, σ⟩ where S is either
some program or ✓ and σ is an environment. A pair ⟨✓, σ⟩ is used to denote a final
configuration (i.e a stage in which the program has finished executing). A configuration
⟨S, σ⟩ is said to be stuck if

• S ̸= ✓ and
• there are no more subsequent transitions. For instance, this could be the case in
evaluation errors or other types of errors.

3

1 Syntax and Semantics of our language Sunday 17th July, 2022, 09:16

1.2.4 Defining the SOS. We will now define the operational semantics of our language
by specifying a bunch of inference rules. The first rule will simply be

⟨skip, σ⟩ −→ ⟨✓, σ⟩(1)

In other words, an empty program will always terminate. The second rule is an inference
rule specifying how assignment works.

⟨x := e, σ⟩ −→ ⟨✓, σ[eval(e, σ)/x]⟩(2)

Next, we have

⟨S1, σ1⟩ −→ ⟨✓, σ2⟩
⟨S1;S2, σ1⟩ −→ ⟨S2, σ2⟩(3)

The above inference rule specifies that our programming language is sequential, i.e com-
mands execute one after another. Next, we have

⟨S1, σ1⟩ −→ ⟨S3, σ2⟩
⟨S1;S2, σ1⟩ −→ ⟨S3;S2, σ2⟩(4)

Next, we will define two inference rule for the if-then-else construct. The first rule is

eval(B, σ) = true

⟨if B then S1 else S2 end if , σ⟩ −→ ⟨S1, σ⟩(5)

and the second one is

eval(B, σ) = false

⟨if B then S1 else S2 end if , σ⟩ −→ ⟨S2, σ⟩(6)

Finally, we specify the semantics of while loops. First, we have the followign rule.

eval(B, σ) = true

⟨while B do S endwhile, σ⟩ −→ ⟨S;while B do S endwhile, σ⟩(7)

Next, we have

eval(B, σ) = false

⟨while B do S endwhile, σ⟩ −→ ⟨✓, σ⟩(8)

With the eight rules above, we have fully specified the operational semantics of our lan-
guage.

1.2.5 Derivation Sequences. Given a program S starting with environment σ, a
derivation sequence is either

• A finite sequence γ0, ..., γk of configurations satisfying γ0 = ⟨S, σ⟩, γi −→ γi+1 for
all 0 ≤ i ≤ k, and γk is either a final configuration or a stuck configuration.

• An infinite sequence γ0, γ1, γ2, ... of configurations satisfying only the first two con-
ditions in the previous point.

1.2.6 Specification of Errors. By introducing special values in V al which indicate
undefined/erroneous behavior (for example division by zero) and by introducing a special
configuration called ERROR, we can use inference rules to specify errors in our language.
I won’t write all the details here, but this is fairly easy to do.

4

2 Logic Fundamentals Sunday 17th July, 2022, 09:16

2. Logic Fundamentals

2.1 Propositional Logic

2.1.1 Syntax. We start with an infinite set of atomic propositions A. Using these
atomic propositions, logical formulae are created inductively; equivalently, we describe
this using the following grammar.

ϕ ::= ⊤
| ⊥
| p

| ¬ϕ1
| ϕ1 ∧ ϕ2
| ϕ1 ∨ ϕ2
| ϕ1 =⇒ ϕ2

| ϕ1 ⇐⇒ ϕ2

| ϕ1 ⊕ ϕ2

Above, p ∈ A is any atom.

2.1.2 Semantics. Having defined the syntax of formulae in predicate logic, we now
define the semantics of this logic. For any formula ϕ, let atoms(ϕ) denote the set of
atoms contained in ϕ. Let σ : atoms(ϕ) → {true, false} be any valuation. With respect
to this valuation, every formula ϕ evaluates to either true or follows as per the following
rules.

J⊤Kσ ::= true

J⊥Kσ ::= false

JpKσ ::= σ(p) ∀p ∈ A

J¬ϕ1Kσ ::= ¬ Jϕ1Kσ
Jϕ1 ∧ ϕ2Kσ ::= Jϕ1Kσ ∧ Jϕ2Kσ
Jϕ1 ∨ ϕ2Kσ ::= Jϕ1Kσ ∨ Jϕ2Kσ

Jϕ1 =⇒ ϕ2Kσ ::=

{
true , if Jϕ1Kσ = false or Jϕ2Kσ = true

false , otherwise

Jϕ1 ⇐⇒ ϕ2Kσ ::=

{
true , if Jϕ1Kσ = Jϕ2Kσ
false , otherwise

Jϕ1 ⊕ ϕ2Kσ ::= Jϕ1Kσ ⊕ Jϕ2Kσ

Definition 2.1. For a given formula ϕ, if JϕKσ = true, then σ is said to be a model (or
satisfying assignment) for ϕ. ϕ is said to be
(1) valid, if all valuations σ are models for ϕ.
(2) SAT, if there exists a model for ϕ.
(3) UNSAT, if there exists no model for ϕ.

5

2 Logic Fundamentals Sunday 17th July, 2022, 09:16

2.2 Predicate Logic

2.2.1 Syntax. As before, let V denote an infinite set of variables. Let (F, P) be a pair
of sets of symbols (the meanings of which will be made clear in a moment); this pair will
be called a signature. A term in predicate logic is any element belonging to the following
grammar.

term := v

| f(term1, ..., termn)

Above, f ∈ F is any symbol. Any formula in predicate logic is any member element
belonging to the following grammar (such formulae are also called well-defined formulae).

ϕ := ⊤
| ⊥
| p(term1, ..., termn)

| ¬ϕ1
| ϕ1 ∧ ϕ2
| · · ·
| ∀v.ϕ1
| ∃v.ϕ1

Above, the dots (· · ·) mean that the usual logical operators are included in the grammar.
Also, p ∈ P is any symbol.

Now, a word about the sets F and P . The elements of F are said to be function symbols,
and the elements of P are said to be predicate symbols. Any symbol f ∈ F should be
thought of as an n-ary function (for some n) f : Dn → D, where D is the domain in
which the variables in V take values. Any symbol p ∈ P should be thought of as a
predicate on Dn (for some n); more formally, a symbol p ∈ P represents some subset of
Dn. Evaluating p(x1, ..., xn) for x1, ..., xn ∈ D will then be equivalent to checking whether
(x1, ..., xn) belongs to that subset; if it does, the predicate is true, otherwise it is false.
We will have more to say about these symbols in the next section.

2.2.2 Semantics. We begin first with the definition of an interpretation (also referred
to as a model).

Definition 2.2. An interpretation (or model) is a triple (D, iF , iP) where
• D is a set, the domain of interpretation.
• iF maps every element of F to an n-ary function on D, where n is some positive
integer.

• iP maps every element of P to a subset of Dn.

The above definition combined with the semantics (which we’re about to define) will
justify why elements of F and P are called function and predicate symbols respectively.

Definition 2.3. Given a formula ϕ and some interpretation/model M = (D, iF , iP) and

6

2 Logic Fundamentals Sunday 17th July, 2022, 09:16

a valuation σ of the variables in ϕ over the domain D, we define the following.

JvKM,σ ::= σ(v)

Jf(t1, ..., tn)KM,σ ::= iF (f)(Jt1KM,σ , ..., JtnKM,σ)

J⊤KM,σ ::= true

J⊥KM,σ ::= false

Jp(t1, ..., tn)KM,σ ::= (Jt1KM,σ , ..., JtnKM,σ) ∈ iP (p)

J¬ϕ1KM,σ ::= ¬ Jϕ1KM,σ

Jϕ1 ∧ ϕ2KM,σ ::= Jϕ1KM,σ ∧ Jϕ2KM,σ

· · ·

J∀v.ϕ1KM,σ ::=

{
true , if Jϕ1KM,σ[t/v] = true ∀t ∈ D

false , otherwise

J∃v.ϕ1KM,σ ::=

{
true , if Jϕ1KM,σ[t/v] = true for some t ∈ D

false , otherwise

These definitions are nothing but a formalization of the usual meanings of true/false
assignments to formulae.

Definition 2.4. A model M is said to satisfy a formula ϕ, which is written M |= ϕ if
JϕKM,σ holds for all valuations σ. ϕ is said to be satisfiable if there is a model/interpre-
tation which satisfies it. ϕ is said to be valid if it holds for all models and all valuations.

Definition 2.5. Suppose Σ is some signature. Let Γ be a set of Σ-formulas. We write
M |= Γ to signify that M |= ϕ for all ϕ ∈ Γ. Moreover, if Γ is a set of Σ-formulas and ϕ is
another Σ-formula, then Γ is said to logically imply ϕ, written Γ |= ϕ, iff for every model
M of Σ, if M |= Γ then M |= ϕ. This is just formalizing the notion of logical implication
of a set of formulas. With this definition, two formulas ψ and ϕ are said to be logically
equivalent if ψ |= ϕ and ϕ |= ψ (note that ψ |= ϕ is a shorthand for {ψ} |= ϕ).

2.3 Formal reasoning of programs: Hoare Logic

2.3.1 Hoare Triples. First, we introduce Hoare Triples. In all of this discussion, we will
assume that our programming language has the syntax and semantics which we defined
before, and we will be working with a predicate logic on a given domain.

A Hoare Triple is a triple {P}Q {R}, where P and R are predicates, and Q is a program
(i.e some code generated out of the syntax grammar), such that the following holds.

∀x, y : (P (x) ∧ program Q terminates on x with output y) =⇒ R(y)

In simple words, for all valuations for the input variables x for which the predicate P holds
and the program Q terminates with output y, R(y) must be true. Note the termination
condition; in particular, if there is no values for the input variables for which Q terminates,
the implication follows vacuously (as the left hand side of the implication will be false).

2.3.2 Inference rules for Hoare Triples. In this section, we will introduce inference
rules for Hoare logic, which will form the basis of deriving proofs for program correctness.

The first inference rule is for the skip command.

{P} skip {P}(9)

7

2 Logic Fundamentals Sunday 17th July, 2022, 09:16

The next inference rule is the backwards assignment inference rule.

{P [e/x]}x := e {P (x)}(10)

Let us now describe the intent behind introducing this rule. We want the postcondition
P to be true; clearly, the weakest precondition for which P will certainly be true is P [e/x],
i.e the predicate P with all occurences of x replaced by e. Certainly, this forms a valid
Hoare triple.

Example 2.1. Suppose our program is just a single assignment statement, x := x + 1.
Suppose the postcondition we want to hold is x > 0. So, by the inference rule (10), we
see that the weakest precondition for which the Hoare triple will be valid is P [e/x] =
(x + 1) > 0, which is the same as the predicate x ≥ 0. So, we obtain the Hoare triple
{x ≥ 0}x := x+ 1 {x > 0}.

Next, we introduce the forward assignment inference rule. The motivation here is pretty
similar to the backwards assignment rule, except that here, given a precondition and
a program which is a single assignment statement, we want to determine the strongest
postcondition which will give us a valid Hoare triple. We now state the inference rule.

{P (x)}x := e[x] {∃v : P (v) ∧ x = e[v/x]}(11)

Let us look at an example for this rule.

Example 2.2. Suppose P (x) is the predicate x = 5, and our program is x := x + 1.
According to the above rule, the strongest postcondition is ∃v : v = 5 ∧ x = v + 1; this
postcondition implies x = 5 + 1 = 6.

Note that the forward assignment inference rule above involves an existential quantifier.
We can this inference rule without the existential quantifier by explicitly writing the initial
value of the variable x as follows.

{PreCond(x) : x = x0 ∧ P (x)}x := e[x] {PreCond(x0) ∧ x1 = e[x0/x] ∧ x = x1}(12)

This demands an explanation. Above, we have introduced an explicit value x0, using
which the existential quantifier can be dealt with. We let PreCond(x) be the predicate
x = x0∧P (x); in the postcondition, we instantiate the predicate PreCond with the intial
value x0, introduce a new variable x1 = e[x0/x] and set x = x1.

Example 2.3. As an example, suppose again that the predicate P (x) is x = 5 and the
program is x := x+1. So, we have PreCond(x) : x = x0∧x = 5. Using the second version
of the forward assignment inference rule, we obtain the postcondition PreCond(x0)∧x1 =
x0 + 1 ∧ x = x1, which is the same as x0 = x0 ∧ x0 = 5 ∧ x1 = x0 + 1 ∧ x = x1, which
clearly implies that x = 6.

Ofcourse, this inference rule can be extended to multiple variables; all we need to re-
member is to instantiate PreCond using the initial value of the variable which is being
assigned to a new value by the program (in the above case, this variable is x).

Next, we will look at the sequential composition inference rule. This is straightforward.

{P}Q {R} {R}S {T}
{P}Q;S {T}(13)

This is just saying that a for a program consisting of two subprograms Q and S, we can
derive a Hoare triple using Hoare triples of the two subprograms.

8

2 Logic Fundamentals Sunday 17th July, 2022, 09:16

Next, we introduce the consequence inference rules. These are also pretty straightforward.
The first is the following.

{P}Q {R} P ′ =⇒ P

{P ′}Q {R}(14)

I.e, if P ′ is a stronger precondition than P , then any Hoare triple with P as it’s precon-
dition can be used to another Hoare triple with P ′ as its precondition. There is a similar
inference rule concerning postconditions.

{P}Q {R} R =⇒ R′

{P}Q {R′}(15)

2.3.3 Automation via Static Single Assignment (SSA). In this section we will
briefly describe how a given program is checked automatically via static single assignments
(SSA). This is the technique used by bounded model checkers like CBMC. We will explain
this using a simple program, whose pseudocode is given below.

assume(x > y);

x := x+ 1;

x := x+ 2;

assert(x > y + 3);

Here, think of assume(x > y) as the CBMC __CPROVER_assume() function, and think of
assert(x > y+3) as a usual assert. For any program, a bounded model checker generates
an SSA formula; for the given problem, the SSA formula will be the following.

SSA(x0, x1, x2, y0) = (x0 > y0) ∧ (x1 = x0 + 1) ∧ (x2 = x1 + 2)

Let us now explain this formula. The subscripts below the variables x and y are time
stamps for the variable values; for instance, the initial value of x when the program starts
is x0, and the values x1, x2 represent the values of x after the corresponding assignment
statements. Similarly, y0 represents the initial value of the variable y. Since y is never
reassigned another value, the final value of y after the execution of the program is still
y0. So, the SSA formula is just a conjunction of all the assumptions of the program as
well as the static single assignment formulas, i.e assignment statements in the program.

Having generated the SSA formula for the program, a bounded model checker then gen-
erates a verification condition (VC) for every assertion in the program. In the above
program, the VC formula will be the following.

SSA(x0, x1, x2, y0) =⇒ (x2 > y0 + 3)

Putting the actual value of the SSA formula, the VC formula becomes

[(x0 > y0) ∧ (x1 = x0 + 1) ∧ (x2 = x1 + 2)] =⇒ (x2 > y0 + 3)

So, the VC formula can be thought of as being a formula of the form

assumptions =⇒ assertion

After generating the VC formula for the program, a bounded model checker will then
check if the VC formula is valid (recall Definition 2.4). Checking validity of VC is the
same as checking whether ¬VC is UNSAT, i.e checking whether there is no model and
valuation which satisfies VC. Note that the negation of VC is the formula

assumptions =⇒ ¬assertion

So, a bounded model checker will check whether UNSAT[assumptions =⇒ ¬assertion]
is true; this work is deligated to an SMT solver.

9

2 Logic Fundamentals Sunday 17th July, 2022, 09:16

2.3.4 Conditional Forward Rule. Next, we will see an inference rule for conditional
statements.

{P ∧B}Q {R} {P ∧ ¬B}S {R}
{P} if B then Q else S end if {R}(16)

2.3.5 SSA for programs with conditional commands. We will now see via an
example how an SSA for a program with conditional commands looks like. Suppose the
program is the following.

assume(true)

if x > y then

x := y;

else

x := x;

end if

assert(x ≤ y);

The SSA for this program will look something like the following.

SSA = (x1 = y0) ∧ (x2 = x0) ∧ (x3 = (x0 > y0)?x1 : x2)

Note that third conjunct in the above formula; it is called a merge. For programs which
are branched, i.e programs will can follows different execution branches induced via condi-
tions, the bounded model checker adds a merge for every variable changed in a condition
block. The VC for the above program will be the following.

(x1 = y0) ∧ (x2 = x0) ∧ (x3 = (x0 > y0)?x1 : x2) =⇒ x3 ≤ y0

This formula will then be delegated to an SMT solver, which will check whether it is
UNSAT.

2.3.6 Handling loops. Next, we introduce another inference rule, called the iteration
inference rule.

{P ∧B}Q {P}
{P}while B do Q endwhile {P ∧ ¬B}(17)

This rule is also straightforward and needs little explanation.

The next question is, how do bounded model checkers handle a program with loops? The
answer is something known as unwinding a loop. A bounded model checker will unwind
a given loop to a certain depth, known as the unwind depth; unwinding means flattening
out the loop into a straight program. Hence these model checkers are called bounded
model checkers, because the unwind depth is usually passed as a parameter to the model
checker. Moreover, model checkers use the notion of an inductive loop invariant (LI),
which we will next introduce.

A predicate LI inside a loop is said to be inductive if it is true for all iterations, i.e
{LI ∧ LC}Body {LI} must be a valid Hoare Triple. Here LC is the loop condition and
Body is the body of the loop. Additionally, LI is said to be an inductive loop invariant
if it also holds before the loop, i.e {PreCond}PreLoopCode {LI} is a valid Hoare triple.
For a given property P , LI is said to be a safe inductive invariant if it is able to prove P
on loop exit, i.e the formula (LI ∧ ¬LC) =⇒ P is valid.

10

3 Lattices and Fixed Point Theory Sunday 17th July, 2022, 09:16

2.3.7 Inductive Loop Invariants for Transition Systems. Suppose T is a transition
system (i.e, T relates a state s to a state s′, where a state is just a state of the program in
question. For most purposes we will assume that a transition system will be represented
as a predicate formula. To see examples of this, see solutions to HW-2). A predicate P
is said to be inductive for T if

P (s) ∧ T (s, s′) =⇒ P (s′)

where s, s′ are states. The above formula is also expressed by saying that the image of
set of all P states is closed under T .

In the upcoming section, we will find a systematic way of computing inductive loop
invariants for loops using fixed point theory.

3. Lattices and Fixed Point Theory

3.1 Overview

3.1.1 Total and Partial Orders. For the sake of completeness we will include the
definitions of total and partial orders here.

Definition 3.1. A totally ordered set is a tuple (P,≤) where ≤⊆ P × P is a total order,
i.e it holds that:
(1) ≤ is total, i.e a ≤ b or b ≤ a for all a, b ∈ P .
(2) ≤ is transitive, i.e a ≤ b and b ≤ c implies a ≤ c for all a, b, c ∈ P .
(3) ≤ is anti-symmetric, i.e a ≤ b and b ≤ a implies a = b for all a, b, c ∈ P .

Definition 3.2. A partially ordered set is a tuple (P,⪯) where ⪯⊆ P × P is a partial
order, i.e it holds that:
(1) ⪯ is reflexive, i.e a ⪯ a for all a ∈ P .
(2) ⪯ is transitive, i.e a ⪯ b and b ⪯ c implies that a ⪯ c for all a, b, c ∈ P .
(3) ⪯ is anti-symmetric, i.e a ⪯ b and b ⪯ a implies a = b for all a, b ∈ P .

Definition 3.3 (Join). Let (P,⪯) be a poset. An upper bound of a set M ⊆ P is an
element u ∈ P such that x ⪯ u for all x ∈M . The least upper bound, denoted ⊔M , is an
element u ∈ P such that
(1) u is an upper bound of M .
(2) u ⪯ u′ for all upper bounds u′ of M .

The operator ⊔ is known as the join operator.

Definition 3.4 (Dual of Join). A lower bound and a greatest lower bound of a set
M ⊆ P are defined analogously. The greatest lower bound of M is denoted by ⊓M . The
operator ⊓ is called the meet operator.

3.1.2 Lattices. We will now define lattices.

Definition 3.5. A semi lattice is a tuple (A,⪯,⊔) where (A,⪯) is a poset with join ⊔.
A complete semi-lattice is a lattice (A,⪯,⊔) such that the join ⊔B of every (non-empty)
subset B ⊆ A exists in A. A lattice is a semi-lattice (A,⪯,⊔) with additionally a meet ⊓
operator, and analogously a complete lattice is defined.

Usually, given a lattice A, when ⊔A exists, we call it the top element, and when ⊓A exists,
we call it the bottom element. These are examples of maximal and minimal elements in
a poset.

11

3 Lattices and Fixed Point Theory Sunday 17th July, 2022, 09:16

Definition 3.6 (Monotone Function). Let (X,⪯X) and (Y,⪯Y) be posets and let
f : X → Y be a total function. f is said to be monotone if for all a, b ∈ X

a ⪯X b =⇒ f(a) ⪯Y f(b)

Definition 3.7 (Fixed Points). Let X be a poset. For a function f : X → X, Fix(f),
the set of fixed points of f , is defined to be

Fix(f) = {x ∈ X | f(x) = x}

3.1.3 Knaster-Tarski Theorem. In this section, we will mention (without proof) a
theorem in lattice theory that characterises fixed points of a monotone function.

Theorem 3.1 (Knaster-Tarski). Let (L,⪯) be a complete lattice. Then, the least fixed
point of a monotone function f : L→ L always exists and is given by

lfp(f) =
l
Red(f)

where Red(f) := {x ∈ L | f(x) ⪯ x}. Similarly, the greatest fixed point of f always exists
and is given by

gfp(f) =
⊔
Ext(f)

where Ext(f) := {x ∈ L | x ⪯ f(x)}.

Proof. We will only prove the first part of the theorem, as the second part can be proven
similarly.

First, define

lfp(f) =
l
Fix(f)

We will do the proof in two parts, wherein we will prove that
• lfp(f) ∈ Red(f).
•

d
Red(f) is a fixed point.

Let us show the first part. Note that lfp(f) is a lower bound of Fix(f) by definition. So,
for any y ∈ Fix(f), we have that

lfp(f) ⪯ y

Because f is monotonic, it follows that

f(lfp(f)) ⪯ f(y) = y

Clearly, this implies that f(lfp(f)) is a lower bound of Fix(f) too. But because lfp(f)
is the greatest lower bound, it must be the case that f(lfp(f)) ⪯ lfp(f), which implies
that lfp(f) ∈ Red(f).

Now, let’s prove the second bullet point, namely that
d
Red(f) is a fixed point of f . To

prove this, we will show that f (
d
Red(f)) ⪯

d
Red(f) and

d
Red(f) ⪯ f (

d
Red(f)).

(1) Note that
d
Red(f) ⪯ x for every x ∈

d
Red(f), which is true by definition. Since f

is monotone, this means that f (
d
Red(f)) ⪯ f(x) ⪯ x for every x ∈ Red(f). Sinced

Red(f) is the greatest lower bound of Red(f), this implies that f (
d
Red(f)) ⪯d

Red(f).
(2) The above inequality implies that f (

d
Red(f)) ∈ Red(f). But this clearly means

that
d
Red(f) ⪯ f (

d
Red(f)).

12

3 Lattices and Fixed Point Theory Sunday 17th July, 2022, 09:16

Hence,
d
Red(f) is indeed a fixed point of f .

Finally, note that because
d
Red(f) ∈ Fix(f), we have that lfp(f) ⪯

d
Red(f). And,

since lfp(f) ∈ Red(f), we have that
d
Red(f) ⪯ lfp(f). This proves that lfp(f) =d

Red(f), and completes the proof of the theorem. ■

Example 3.1. Let us see an example of this theorem in the reachability problem. Suppose
we are given a transition system T with state space S, a set of initial states I and a
transition relation R ⊆ S × S. We will work with the lattice (2S ,⊆), which is clearly a
complete lattice. Define the post operator post : 2S → 2S as follows, where X ∈ 2S .

X 7→
{
s′ ∈ S |∃ s ∈ X s.t R(s, s′)

}
In other words, post(X) is precisely the set containing all states reachable from a state
in X in one step of the transition system. In general, the set of k-reachable states will be
postk(I). Then consider the monotonic function f on this lattice defined by

f(X) = I ∪ post(X)

Note that

f0(ϕ) = ϕ

f1(ϕ) = I ∪ post(ϕ) = I

f2(ϕ) = I ∪ post(I)
f3(ϕ) = I ∪ post(I ∪ post(I)) = I ∪ post(I) ∪ post2(I)

and in general one can observe that fk(I) = I ∪ post(I) ∪ · · · ∪ postk−1(I). In particular,
if one can find k such that fk(ϕ) ⊆ fk−1(ϕ), one will have found a fixed point of f . We
will explore this method of repeated iteration to compute fixed points in the next section.

3.1.4 Continuous Functions and Kleene’s Fixed Point Theorem. First, we will
define continuous functions in the context of lattices.

Definition 3.8. Let X,Y be posets and let f : X → Y be some function. Assume that
f is monotone (though this is strictly not needed).
(1) f is said to be semi-⊔-continuous if it preserves upper bounds of ascending chains,

i.e for each ascending chain C of X, we have⊔
Y

{f(X) | X ∈ C} = f

(⊔
X

C

)
(2) f is said to be semi-⊓-continuous if it preserves upper bounds of ascending chains,

i.e for each ascending chain C of X, we have

l

Y

{f(X) | X ∈ C} = f

(
l

X

C

)
Theorem 3.2 (Kleene’s Fixed Point Theorem). Let S be a complete lattice and let
f, g : S → S be monotone functions (w.r.t the partial order on S). Further, suppose f is
semi-⊔-continuous and g is semi-⊓-continuous. Then,

lfp(f) =
⊔
k≥0

fk(⊥)

gfp(g) =
l

k≥0

gk(⊤)

13

4 Abstract Interpretation Sunday 17th July, 2022, 09:16

Proof. Again, we will only prove this for the lfp, as the proof of the gfp is similar.

Let x̃ =
d
Red(f) as per Tarski’s characterisation of lfp. We show that x̃ ⪯

⊔
k≥0

{
fk(⊥)

}
and that

⊔
k≥0

{
fk(⊥)

}
⪯ x̃, and that will prove the claim.

(1) First, let us show that x̃ ⪯
⊔

k≥0

{
fk(⊥)

}
. Note that for every k ≥ 0, we have that

fk(⊥) ⪯ fk+1(⊥); this follows from the monotonicity of f and the fact that ⊥ is
the smallest element. This implies by the continuity of f that

f

⊔
k≥0

{
fk(⊥)

} =
⊔
k≥0

{
fk+1(⊥)

}
⪯
⊔
k≥0

{
fk(⊥)

}
The above inequality implies that

⊔
k≥0

{
fk(⊥)

}
∈ Red(f). And so, naturally we

get that x̃ ⪯
⊔

k≥0

{
fk(⊥)

}
.

(2) Next, let us show that
⊔

k≥0

{
fk(⊥)

}
⪯ x̃. To show this, we will show that for every

k ≥ 0, it is the case that fk(⊥) ⪯ x̃. The proof will be by induction on k.
• The base case k = 0 is trivial, since ⊥ is the smallest element.
• Now suppose fk(⊥) ⪯ x̃ for some k. By the monotonicity of f , this implies
that

f(fk(⊥)) ⪯ f(x̃) = x̃

where the last equality is true because x̃ is a fixed point of f . This proves the
inductive case.

Hence, the inequality follows.
From the above two inequalities, the claim follows. ■

Example 3.2. In Example 3.1 we saw a monotonic increasing function f on the lattice
(2S ,⊆) corresponding to a transition system. Now, suppose P is some predicate, and we
interpret P as an element of 2S (it contains all those states which satisfy the predicate).
Now, define a function g : 2S → 2S as follows (here ⊤ = S is the greatest element).

X 7→ (P ∩ ⊤) ∩
{
s ∈ X | ∀s′ ∈ S,¬R(s, s′) ∨ s′ ∈ P

}
In other words, the function g removes from a set X all those elements which violate P
and all those elements whose one-step successor in the transition system violate P .

4. Abstract Interpretation

4.1 Abstractions

4.1.1 Introduction. The idea of abstractions is one of the central ideas in static analy-
sis. We will formalize this notion in the upcoming section, but we can look at an example
right now.

Example 4.1. Suppose our program only has one variable (let’s call it x) which can
take values in the domain {1, 2, 3}. This is to say that at any point in the program, the
variable is guaranteed to have a value in this set. Now, we want to keep track of the range
of values in which x can lie; for this, we will use intervals. Let A be the set of all intervals
of the form [a, b], where a, b are integers and 1 ≤ a ≤ b ≤ 3. Consider the map α : 2S → A
given by

X 7→ [minX,maxX]

Here, S = {1, 2, 3} and X ⊆ S. In this case, α is said to be an abstract interpretation.
We will further formalize this notion in the next section.

14

4 Abstract Interpretation Sunday 17th July, 2022, 09:16

In the above example, the set S = {1, 2, 3} is called the concrete space, and the set A (the
set of intervals) is called the abstract space.

4.1.2 Galois Connections. Let C,A be partial orders (where we will assume C is the
concrete space and A is the abstract space). Let α : C → A and γ : A→ C be mappings
such that the following hold.

• α is a monotone function; it is called a monotone abstraction function.
• γ is a monotone function; this is also called the concretizer function.
• For all c ∈ C, it must be the case that c ⪯ γ(α(c)); in other words, γ bounds from
above.

• For all a ∈ A, it must be the case that α(γ(a)) ⪯ a; in other words, α bounds from
below.

In such a case, the maps α and γ are set to form a Galois connection.

Spelled out in words, the above definition is saying the following.
• γ maps an abstract element a to a concrete element c that is greater or equal to
than every element that gets abstracted to the same a.

• α maps a concrete c to an abstract a that is less than or equal to every element that
gets concretized to the same c.

Definition 4.1 (Over-approximate transformers). Let C,A be partial orders as
above. Let f : C → C, f# : A → A be monotone functions. f# is said to be an
over-approximation of f if and only if for all a ∈ A, it is true that

f(γ(a)) ⪯ γ(f#(a))

Now, suppose f# is an over-approximation of f . Then we know that f(γ(a)) ⪯ γ(f#(a)).
Applying α to both sides, we see that

(α ◦ f ◦ γ)(a) ⪯ α(γ(f#(a)))

But because α-γ form a Galois connection, we know that α(γ(f#(a))) ⪯ f#(a). So, we
see that

(α ◦ f ◦ γ)(a) ⪯ f#(a)

This shows that the most precise over-approximation of the function f is the function
α ◦ f ◦ γ.

4.1.3 Ingredients of Abstract Interpretation for Interval Domains. Having for-
malized the notion of abstract interpretation and over-approximate transformers, we will
now build these elements over the domain of intervals.

Our abstract domain will be the lattice of intervals I(Rn) which is defined as the set

I(Rn) = {⊥} ∪ {[I, u] | I ∈ R ∪ {−∞} , u ∈ R ∪ {∞} , I ≤ u}n

Also, we use the notation ⊤ = (−∞,∞)n and ⊥= (∞,−∞)n. For the notation, notation
like X,Y will denote elements of the concrete space, while symbols like X#, Y # will be
used to denote elements of the abstract domain.

The partial ordering on the interval domain is defined in the most straightforward way.

X# ⪯ Y # =

true if X# =⊥
false if X# ̸=⊥ ∧Y # =⊥∧

i∈[1,n] I
Y
i ≤ IXi ≤ uXi ≤ uYi otherwise

15

4 Abstract Interpretation Sunday 17th July, 2022, 09:16

The meet operator ⊓ on two intervals returns the largest interval contained in both the
operands, and the join operator ⊔ returns the smallest interval that contains both the
operands. Due to time constraints, I wasn’t able to complete this section.

16

	Syntax and Semantics of our language
	The Syntax Grammar
	Arithmetic and Boolean Expressions.
	Commands.

	Structural Operational Semantics (SOS).
	Environments.
	Evaluation.
	Configurations.
	Defining the SOS.
	Derivation Sequences.
	Specification of Errors.

	Logic Fundamentals
	Propositional Logic
	Syntax.
	Semantics.

	Predicate Logic
	Syntax.
	Semantics.

	Formal reasoning of programs: Hoare Logic
	Hoare Triples.
	Inference rules for Hoare Triples.
	Automation via Static Single Assignment (SSA).
	Conditional Forward Rule.
	SSA for programs with conditional commands.
	Handling loops.
	Inductive Loop Invariants for Transition Systems.

	Lattices and Fixed Point Theory
	Overview
	Total and Partial Orders.
	Lattices.
	Knaster-Tarski Theorem.
	Continuous Functions and Kleene's Fixed Point Theorem.

	Abstract Interpretation
	Abstractions
	Introduction.
	Galois Connections.
	Ingredients of Abstract Interpretation for Interval Domains.

