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The reference book used was Understanding Machine Learning by Shai Shalev-Shwartz,
Shai Ben-David.

(1) and (2): Axis Aligned Rectangles (Problem 2.3 of the book). In this
problem, we will prove the learnability of axis aligned rectangles in Rd. We will first
deal only with d = 2, i.e rectangles in R2. Note that we will have the realizability
assumption throughout.

1. Let A be the algorithm that returns the smallest rectangle enclosing all positive
examples in the training set. We show that A is an ERM. Here the loss function is
the 0-1 loss (i.e an error incurs a loss of 1 and no error means 0 loss).

Because we have the realiziability assumption in place, we know that there is some
rectangle R in R2 such that

LD,f (R) = 0

This means that the rectangle R contains all the positive points, and that no negative
point is contained inside R. Note that if R∗ is the smallest rectangle containing all the
positive points, then clearly R∗ ⊆ R, and hence R∗ cannot contain any negative points.
Now, if S is any training set, then clearly A(S), the smallest rectangle containing all
positive points in S, must satisfy A(S) ⊆ R∗. This means that A(S) does not contain
any negative points at all, and clearly this means that

LS(A(S)) = 0

because A(S) correctly classifies the positive points within S, and does not contain
any negative points. So, A is indeed an ERM.

2. Now we show that if A receives a training set of size ≥ 4log(4/δ)
ϵ

, then with probability
atleast 1− δ it returns a hypothesis with error at most ϵ.

So, let D be any distribution on X = R2, which is the domain set. Let R∗ =
R(a∗1, b

∗
1, a

∗
2, b

∗
2) be the rectangle that generates the labels (i.e, let R∗ be the smallest

rectangle containing all the positive labels, which we know exists by the realizability
assumption). This implies that f must satisfy the following (where f is the labelling
function).

f(x1, x2) =

{
1 , if a∗1 ≤ x1 ≤ b∗1 and a∗2 ≤ x2 ≤ b∗2
0 , otherwise

Next, we define four special rectangles R1, R2, R3 and R4 as follows. Let a1 ≥ a∗1 be a
number such that the probability mass (w.r.t D) of the rectangle R1 = R(a∗1, a1, a

∗
2, b

∗
2)

is ϵ/4 (we allow a1 = ∞). Similarly, we define corresponding numbers b1, a2 and
b2 such that the probability masses of the rectangles R2 = R(b1, b

∗
1, a2, b2), R3 =

R(a∗1, b
∗
1, a

∗
2, a2) and R4 = R(a∗1, b

∗
1, b2, b

∗
2) are all exactly ϵ/4 (and again, we allow these
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rectangles to have infinite area). Let R(S) be the rectangle returned by A on sample
S.

(1) First, we will show that R(S) ⊆ R∗. This is because of the algorithm A: note
that given any set of points S, the algorithm A returns the smallest rectangle
containing all the positive points in that set. By our assumption, the smallest
rectangle containing all the positive points is R∗; so, if we take a subset of
these positive points, then the smallest rectangle containing that subset has to
be contained in R∗. So, R(S) ⊆ R∗.

(2) Next, suppose S contains a positive point in each of the rectangle R1, R2, R3

and R4. This will imply that R(S) will intersect with each of R1, R2, R3 and
R4. Now, the error of the hypothesis R(S) is just going to be the following.

LD,f (R(S)) = Dm(R∗ \R(S))

This above is true because R(S) will correctly classify all positive examples
within it, and it will also correctly classify all negative examples (since they
lie outside R∗, and R(S) ⊆ R∗). So, the only error that can be seen is on the
positive examples in the set R∗ \R(S). Finally, since R(S) intersects with each
of R1, R2, R3 and R4, and since each Ri is connected to a distinct edge of R∗,
it follows that

Dm(R∗ \R(S)) ≤
4∑

i=1

Dm(Ri) ≤ 4 · ϵ
4
= ϵ

So, it follows that
LD,f (R(S)) ≤ ϵ

in this case.
(3) Now, for each i, we will upper bound the probability that S does not contain

any positive example from Ri. First, suppose Ri contains a negative example.
Clearly, this implies that R∗ ⊆ Ri (by the way Ri has been defined, this will
means that Ri moves out of the rectangle R∗), which means Dm(R∗) ≤ ϵ/4.
In this case, the probability that S does not contain any positive example
in Ri is the same as the probability that S does not contain any positive
example at all (because all positive examples are in R∗), and this has probability(
1− ϵ

4

)m ≤ e−
mϵ
4 .

Next, suppose that Ri does not contain any negative example, implying that
Ri ⊆ R∗. In this case, the probability that S does not contain any positive
example from Ri is the same as the probability that S ∩Ri = ϕ, which is again(
1− ϵ

4

)m ≤ e−
mϵ
4 .

So, for each i, the probability that S does not contain any example from Ri

is ≤ e
−mϵ
4 .

(4) Finally, observe the following: points number (2) and (3) above show that

P
S∼Dm

[LD,f (A(S)) > ϵ] = P
S∼Dm

[S ∩Ri has no positive sample for some i]

≤
4∑

i=1

P
S∼Dm

[S ∩Ri has no positive sample]

≤ 4e
−mϵ
4
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If m ≥ 4log(4/δ)
ϵ

, then

4e
−mϵ
4 ≤ δ

which means that
P

S∼Dm
[LD,f (A(S)) ≤ ϵ] ≥ 1− δ

So, via the above proof, we’ve shown that rectangles in R2 are learnable.

3. Let us now consider axis-aligned rectangles in Rd. Most of the above arguments
can be repeated for d-dimensions as well, with a bunch of changes.

First, the algorithm A remains the same: given a input set S, it will return the
smallest hypercube containing all the positive points in the input set. The realizability
assumption gives us a hypercube hypercube R∗ = (a∗1, b

∗
1, ...., a

∗
d, b

∗
d), which is the small-

est hypercube containing all of the positive points in the domain set. In d dimensions,
any hypercube is described by d intervals [ai, bi] for 1 ≤ i ≤ d; a point (x1, ..., xd) is
labelled positive if ai ≤ xi ≤ bi for each i, and is labelled negatively otherwise.

Then, for each 1 ≤ i ≤ d, we define two rectangles Ri and R′
i as follows.

Ri = R(a∗1, b
∗
1, ..., a

∗
i−1, b

∗
i−1, a

∗
i , ai, a

∗
i+1, b

∗
i+1, ..., a

∗
d, b

∗
d)

R′
i = R(a∗1, b

∗
1, ..., a

∗
i−1, b

∗
i−1, bi, b

∗
i , a

∗
i+1, b

∗
i+1, ..., a

∗
d, b

∗
d)

Above ai ≥ a∗i is the real number for which the rectangle Ri has probability mass
(w.r.t D) exactly ϵ

2d
. Similarly, bi ≤ b∗i is that real number for which R′

i has mass
exactly ϵ

2d
.

We again have the following observations.
(1) If S is any input set, then again by the definition of the algorithm A, R(S) ⊆

R∗.
(2) If the training set S contains a positive point in each of the rectangles Ri, R

′
i,

then again it will be true that

Dm(R∗ \R(S)) ≤
d∑

i=1

Dm(Ri) +Dm(R′
i) ≤ 2d · ϵ

2d
= ϵ

and hence in this case the error of R(S) will be atmost ϵ.
(3) Just like in the 2 dimensional case, the probability that S does not contain any

positive point from the set Ri or R′
i will be bounded above by e−

mϵ
2d (the same

argument goes through).
(4) So, if we choose m such that

2de
−mϵ
2d ≤ δ

which is the same as choosing

m ≥ 2d log(2d/δ)
ϵ

then we are guaranteed that the error of the output is atmost ϵ.

(3) Problem 3.5 of the book. Let X be a domain, and let D1, ...,Dm be a sequence
of distributions over X . Let H be a finite hypothesis class of binary classifiers over X
and let f ∈ H. Let Dm be the average distribution, i.e

Dm =
D1 + ...+Dm

m
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Finally, suppose a training set S with |S| = m is sampled, such that each point in the
set is sampled independently, and the ith point is drawn from the distribution Di, for
1 ≤ i ≤ m. So,

S = {(x1, y1), ..., (xm, ym)}

where xi ∼ Di and yi = f(xi) for each 1 ≤ i ≤ m. Let ϵ ∈ (0, 1) be fixed. We show
that

P
S

[
∃h ∈ H s.t. L(Dm,f)(h) > ϵ and L(S,f)(h) = 0

]
≤ |H|e−ϵm

Consider the following set.

M :=
{
S | ∃h ∈ H s.t. L(Dm,f)(h) > ϵ and L(S,f)(h) = 0

}
Clearly, M is a subset of the following union.

M ⊆
∪
h∈H

{
S | L(Dm,f)(h) > ϵ and L(S,f)(h) = 0

}
This is true because every S ∈ M clearly belongs to the RHS, but due to repetitions,
the inclusion may be strict. So, by a union bound, we have that

P
S
[M ] ≤

∑
h∈H

P
S

[
S | L(Dm,f)(h) > ϵ and L(S,f)(h) = 0

]
(0.1)

So, we need to bound each term of the sum above. So, let h ∈ H be fixed such that

L(Dm,f)(h) > ϵ

By definition, this gives us the following inequality.

P
X1∼D1

[h(X1) = f(X1)] + · · ·+ P
Xm∼Dm

[h(Xm) = f(Xm)]

m
< 1− ϵ

Now, to this we apply the AM-GM inequality. Doing so, we get the following.

m∏
i=1

P
Xi∼Di

[h(Xi) = f(Xi)] ≤

∑m
i=1 P

Xi∼Di

[h(Xi) = f(Xi)]

m

m

< (1− ϵ)m

Now, we use the fact that the Xi are independent: the left hand product of the above
inequality is simply

P
S

[
L(S,f)(h) = 0

]
=

m∏
i=1

P
Xi∼Di

[h(Xi) = f(Xi)]

So, we see that
P
S

[
L(S,f)(h) = 0

]
< (1− ϵ)m ≤ e−mϵ

So, by equation (0.1), we see that

P
S
[M ] ≤ |H|e−mϵ

and this is exactly what we wanted to prove.
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(4) Problem 3.6 of the book. Let H be a class of binary classifiers. Suppose H is
agnostically PAC learnable with algorithm A. We show that H is PAC learnable as
well, with the same algorithm. (Recall that the definition of PAC learnability involved
the realizability assumption).

So, let f : X → Y be a labelling function, and let ϵ, δ ∈ (0, 1) be fixed. Let the loss
function be the 0− 1 loss. Let D be any distribution on X such that the realizability
assumption holds w.r.t H,D and f .

We introduce a joint distribution D′ on Z = X × {0, 1} as follows. For x ∈ X and
y ∈ {0, 1}, define

P
(X,Y )∼D′

[X = x, Y = y] =

{
P

X∼D
[X = x] , if y = f(x)

0 , otherwise

This can be equivalently stated in terms of conditional probabilities given x ∈ X : the
conditional probability of Y = f(x) given X = x is 1.

So now, D′ is a distribution on X × {0, 1}. Since H is agnostically PAC learnable,
there is a number mH(ϵ, δ) such that on a training set with m ≥ mH(ϵ, δ) i.i.d samples
drawn with distribution D′, it is true that

P
S∼(D′)m

[
LD′(A(S)) ≤ min

h∈H
LD′(h) + ϵ

]
≥ 1− δ(0.2)

Note that, by our definition of D′, points of the form (x, f(x)) are picked with proba-
bility P

X∼D
[X = x], and points of the form (x, 1−f(x)) are never picked (i.e are picked

with zero probability). Also, combining this with the fact that the loss function is
0− 1 loss, this means that for any h ∈ H, we have

LD′(h) = P
X∼D

[h(X) ̸= f(X)] = LD,f (h)

Combining all of these facts into equation (0.2), we see that

P
S∼(D′)m

[
LD′(A(S)) ≤ min

h∈H
LD′(h) + ϵ

]
= P

S∼Dm

[
LD,f (A(S)) ≤ min

h∈H
LD,f (h) + ϵ

]
= P

S∼Dm
[LD,f (A(S)) ≤ 0 + ϵ]

≥ 1− δ

where in the last step, we have simply used the realizability assumption. So, we have
just shown that H is PAC learable with the same algorithm A, and this completes the
proof.

(5) The Bayes Optimal Predictor (Problem 3.7 of book). In this problem, we
will prove the optimality of the Bayes classifier. First, we prove a lemma. Given a
distribution D on X × Y and given x ∈ X , we will use the notation DY|x to denote
the induced distribution on Y given X = x.

Lemma 0.1. Let D be a distribution on Z = X × {0, 1}. Let x ∈ X be fixed. Let
g : X → {0, 1} = Y be any classifier, and let fD be the Bayes classifier. Then,

P
Y∼DY|x

[g(X) = Y | X = x] ≤ P
Y∼DY|x

[fD(X) = Y | X = x]

Proof. To prove this, we will deal with the following two cases.
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(1) In the first case, suppose that fD(x) = 1. By definition, this means that
P

Y∼DY|x
[Y = 1 | X = x] ≥ P

Y∼DY|x
[Y = 0 | X = x]

Now, if g(x) = 1, then the claim trivially holds (because the two probabilities
are equal). If g(x) = 0, then the above inequality is the inequality we want to
prove.

(2) In the second case, we have fD(x) = 0. This case is symmetric to the above
case.

So the claim has been proven. ■
Now, let us prove the original claim. Let D be any distribution on Z = X ×Y , and

let DX be the marginal distribution over X . Let X,Y be random variables denoting
the values of x and y.

We want to show that
P

(X,Y )∼D
[fD(X) ̸= Y ] ≤ P

(X,Y )∼D
[g(X) ̸= Y ]

Note that this is equivalent to showing that
P

(X,Y )∼D
[fD(X) = Y ] ≥ P

(X,Y )∼D
[g(X) = Y ]

Intuitively, this just means that the success probability of the Bayes classifier is the
maximum possible success probability. We now have the following.

P
(X,Y )∼D

[g(X) = Y ] =
∑
x∈X

P
(X,Y )∼D

[g(X) = Y ∧X = x]

=
∑
x∈X

P
X∼DX

[X = x] P
Y∼DY|x

[g(X) = Y | X = x]

≤
∑
x∈X

P
X∼DX

[X = x] P
Y∼DY|x

[fD(X) = Y | X = x]

=
∑
x∈X

P
(X,Y )∼D

[fD(X) = Y ∧X = x]

= P
(X,Y )∼D

[fD(X) = Y ]

where in one of the steps above, we used Lemma 0.1. This proves the claim.

(6) Problem 5.2 of the book. As given in the problem statement, the features
available to us are the blood pressure (BP), body-mass index (BMI), age (A), physical
activity (P) and income (I).

Let H2 be the class of two-dimensional axis aligned rectangles, and let H5 be the
class of five-dimensional axis aligned rectangles. Clearly, we see that H2 ⊆ H5.

(1) The pros of choosing the class H2 with the features BP and BMI are straight-
forward: a person’s BP and BMI is more likely to affect a person’s chances
of getting a heart attack than the other features. Also, learning the class H2

is much simpler than learning the class H5, because we not only need fewer
samples to learn, but also the complexity of the learning algorithm is smaller.

On the other hand, the major con of the class H2 is accuracy: if we include
all the parameters like age, physical activity and income, our learner will be
more accurate if it is given enough samples. Even though the complexity of
the class H5 is more, it obviously provides a much flexible model and a model
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which might generalise well. So overall, we are essentially trading between the
complexity of our class and the accuracy.

(2) If we have a small number of samples and we have to learn from only those
samples, it’s a better choice to go with the class H2, because it’s sample com-
plexity is smaller and it will provide a lower generalisation error with the same
training data as compared to the class H5. However, if we have a large number
of samples, enough to train the class H5, and if we are willing to go with a
more complex learning class, then the class H5 is a better choice because it is
more accurate in terms of it’s generalization error. So overall, one really has
to see all factors before choosing the algorithm.
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