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Problem 1 (Problem 6.2 of book). Let X be a finite domain set, i.e |X | <∞. Let
k ≤ |X | be a number. We will figure out the VC dimensions of the given hypothesis
classes.

(1) First, consider the class

HX
=k =

{
h ∈ {0, 1}X : | {x : h(x) = 1} | = k

}
i.e we are considering the class of all functions that assign the value 1 to exactly
k elements of X . We claim that VCdim(HX

=k) = min(k, |X |−k). To show this,
suppose C =

{
x1, ..., x|C|

}
is any subset of X such that |C| > min(k, |X | − k).

We consider two cases.
(a) In the first case, suppose min(k, |X | − k) = k, and hence in this case
|C| > k. Consider the all 1’s function 1 : C → {1}. Clearly, because
|C| > k, there is no h in the hypothesis class such that h|C = 1, because h
can assign the value 1 to exactly k elements, and not any higher number
of elements.

(b) In the second case, suppose min(k, |X | − k) = |X | − k, and hence in
this case |C| > |X | − k. In this case, consider the all zeroes function
0 : C → {0} which assigns 0 to all the elements of C. Note that in this
case, |X |− |C| < k; this means that any extension of the function 0 to the
whole set X can assign 1 to atmost |X | − |C| < k elements, and certainly
there is no such function in the hypothesis class. So, it follows that there
is no function in the hypothesis class which restricts to 0 on C.

So, this shows that any set of size > min(k, |X | − k) cannot be shattered by
the hypothesis class, and this proves our claim.

Next, suppose |C| ≤ min(k, |X | − k). Let g : C → {0, 1} be any function.
Let l = |x ∈ C : g(x) = 1|. It is clear that l ≤ min(k, |X | − k). Also,
let C ′ = X − C =

{
q1, q2, ..., q|X |−|C|

}
. Because |C| ≤ |X | − k, it is clear

that |X | − |C| ≥ k. Now, consider the hypothesis h on X defined as follows:
h|C = g; moreover,

h(q1) = h(q2) = · · · = h(qk−l) = 1

and
h(qk−l+1) = · · · = h(q|X |−|C|) = 0

It is clear that h assigns 1 to exactly k elements of X . Note that even if l = 0,
we are in good shape because in that case k − l = k ≤ |X | − |C|. Since g was

Date: 11 November, 2021.
1



2 SIDDHANT CHAUDHARY BMC201953

any arbitrary function, it follows that C can be shattered by the hypothesis
class. Hence, it follows that VCdim(HX

=k) = min(k, |X | − k).
(2) Now, consider the class

Hat−most−k =
{
h ∈ {0, 1}X : |x : h(x) = 1| ≤ k or |x : h(x) = 0| ≤ k

}
i.e we are considering the class of all functions that either assign 1 to atmost k
elements or assign 0 to atmost k elements. We claim that VCdim(Hat−most−k) =
min(|X |, 2k + 1). To show this, we will consider two cases; the first case will
be when |X | ≤ 2k + 1, and the second case will be when |X | > 2k + 1.

Consider the first case, i.e |X | ≤ 2k+1. In this case, we see that min(|X |, 2k+
1) = |X |. We now argue that X can be shattered. To see this, let g : X →
{0, 1} be any function. Now, let c1 = |x : g(x) = 1| and let c2 = |x : g(x) = 0|.
Clearly, we see that

c1 + c2 = |X | ≤ 2k + 1

Clearly, one of c1 or c2 has to be ≤ k; if not, then c1 ≥ k+1 and c2 ≥ k+1, and
in that case we will have c1 + c2 ≥ 2k + 2 > 2k + 1, a contradiction. Without
loss of generality, suppose c1 ≤ k. But this clearly implies that g ∈ Hat−most−k.
The case c2 ≤ k is symmetric to this. So, we see that in this case, X can be
shattered, and hence VCdim(Hat−most−k) = |X | = min(|X |, 2k + 1).

Now, consider the second case, i.e |X | > 2k + 1, which means |X | ≥ 2k + 2.
In this case, we see that min(|X |, 2k + 1) = 2k + 1. We argue that 2k + 1

is the VC dimension in this case. So, let C be any subset of X such that
|C| = 2k+2 ≤ |X |. Consider the hypothesis g : C → {0, 1} which assigns 1 to
exactly k + 1 elements of C, and assigns 0 to the rest k + 1 elements. Clearly,
note that g cannot be the restriction of any hypothesis h ∈ Hat−most−k, which
is clear by the definition of the hypothesis class. So, we’ve shown that no set
of size 2k + 2 can be shattered.

Next, suppose C is any subset of X with |C| = 2k + 1. Let g : C → {0, 1}
be any map. Again, let c1 = |x ∈ C : g(x) = 1| and c2 = |x ∈ C : g(x) = 0|.
Clearly, we again have that

c1 + c2 = |C| = 2k + 1

As before, one of c1 or c2 has to be ≤ k; without loss of generality, suppose
c1 ≤ k. Consider the hypothesis h : X → {0, 1} such that: h|C = g and
h(x) = 0 for any x ∈ X − C. Clearly, |x ∈ X : h(x) = 1| = |x ∈ C : h(x) =
1| = c1 ≤ k, and by definition, h ∈ Hat−most−k. So, we have shown that g is
the restriction of some h in the hypothesis class. The case c2 ≤ k is symmetric
to this case. So, it follows that any set of size 2k + 1 can be shattered, and
hence VCdim(Hat−most−k) = 2k + 1 = min(|X |, 2k + 1).

So, in all cases, we have shown that VCdim(Hat−most−k) = min(|X |, 2k+1),
and this completes the proof.

Problem 2 (Problem 6.6 of book). In this problem, we will compute the VC
dimension of Boolean conjunctions. Let d ≥ 2 be an integer, and let Hd

con be the class
of Boolean conjunctions over the variables x1, ..., xd. We will do it in the steps given
in the problem.
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1: We show that
|Hd

con| ≤ 3d + 1

Note that if Φ is a boolean conjunction over the variables x1, ..., xd, and if for some
variable xi, both literals xi and ¬xi occur in Φ, then Φ can never be satisfied, i.e
Φ(x1, ..., xd) = 0. So, Φ is just the all negative conjunction. So, we will assume that
Φ does not contain both xi and ¬xi. So now, for each 1 ≤ i ≤ d, we have a choice of
including either xi, ¬xi or none of these in the conjunction Φ. So, there are 3d such
possible conjunctions. Hence, including the all negative conjunction, we see that

|Hd
con| = 3d + 1

and this proves the claim.

2: Suppose k = VCdim(Hd
con). This means that a size of set k is shattered, i.e we can

get all possible 2k functions by restricting Hd
con to the set. Clearly,

2k ≤ 3d + 1

which implies that
k ≤ log (3d + 1)

Because k is an integer and d ≥ 2, we have

k ≤
⌊
log (3d + 1)

⌋
=
⌊
log (3d)

⌋
≤ d log 3

and hence we conclude that

VCdim(Hd
con) ≤ d log 3

3: We now show that Hd
con shatters the set of unit vectors {ei : i ≤ d}. This is

actually very easy to see. Let g : {e1, ..., ed} → {0, 1}. Let {i1, ..., ir} ⊆ [d] be
the set of those indices for which g(ei1) = · · · = g(eir) = 1; we have 0 ≤ r ≤ d.
Consequetly, let {j1, ..., jd−r} = [d] − {i1, ..., ir} be the set of those indices for which
g(ej1) = · · · = g(ejd−r

) = 0. Now, if d− r = 0, i.e if r = d, then we let h to be the all
ones classifier, i.e the empty boolean conjunction. Clearly, h ∈ Hd

con, and

h|{e1,...,ed} = g

So, suppose r < d, and in that case, d− r > 0. Consider the boolean conjunction

h(x1, ..., xd) = xj1 ∧ xj2 ∧ · · · ∧ xjd−r

It is now easy to see that
h|{e1,...,ed} = g

Finally, suppose r = 0. In that case, simply take h to be the all negative classifier, i.e

h(x1, ..., xd) = x1 ∧ x1

and again we see that
h|{e1,...,ed} = g

Since g was an arbitrary classifier, we have shown thatHd
con shatters the set {e1, ..., ed}.

Using this, we can conclude that

VCdim(Hd
con) ≥ d
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4: Next, we will show that VCdim(Hd
con) ≤ d. For the sake of contradiction, suppose

there is a set C = {c1, ..., cd+1} that is shattered by Hd
con. Now, let h1, ..., hd+1 be

hypothesis in Hd
con that satisfy

∀i, j ∈ [d+ 1], hi(cj) =

{
0 i = j

1 otherwise

In simple words, we are considering functions on C which are 0 at exactly one point
and 1 at all other points, and such hypothesis h1, ..., hd+1 exist because C is shattered.
Now, for each i ∈ [d + 1], this means that the conjunction hi contains some literal li
which is false on ci but is true for all cj with j 6= i. So, we have a set of d+ 1 literals
{l1, ..., ld+1}. But recall that there are only d variables x1, ..., xd. So, by the pigeon
hole principle, it follows that for some i < j ≤ d+1, the literals li and lj use the same
variable xk for some 1 ≤ k ≤ d. So, we have two cases to consider.

(1) In the first case, suppose li = xk. Because cj satisfies li, it must be the case
that the value of xk in cj is 1. Now, we know that cj does not satisfy lj, and
hence it must be the case that lj = xk. Now, since d ≥ 2, we see that d+1 ≥ 3,
and hence there is some index 1 ≤ s ≤ d+1 other than i and j. We also know
that cs satisfies li and lj (as c 6= i, j); but this is clearly a contradiction as an
assignment cannot satisfy both xk and xk.

(2) In the second case, we have li = xk. This case is symmetric to the above case,
as we will have lj = xk in this case, and the rest of the reasoning is the same.

So in all cases, we have arrived at a contradiction. Hence, it must be the case that
VCdim(Hd

con) ≤ d, and combined with Step 3, it follows that

VCdim(Hd
con) = d

5: Now let Hd
mcon be the class of monotone Boolean conjunctions over {0, 1}d, i.e the

conjunctions in Hd
mcon do not contain any negations. Also, we augment Hd

mcon with
the all negative hypothesis h−. We show that

VCdim(Hd
mcon) = d

First, note that |Hd
mcon| = 2d + 1; this is true because for every 1 ≤ i ≤ d, we have to

choose whether to include xi or not in the conjunction, and we add 1 to include the
all negative conjunction. So, if k is the VC dimension of this class, then clearly

2k ≤ |Hd
mcon| = 2d + 1

which implies
k ≤ log(2d + 1)

Again, since k is an integer, this means
k ≤

⌊
log(2d + 1)

⌋
=
⌊
log(2d)

⌋
= d

Next, we will show that a set of size d can be shattered by the class. Consider the set
C := {oj = (1, 1, ..., 1)− ej : 1 ≤ j ≤ d} = {(0, 1, ..., 1), (1, 0, ..., 1), ..., (1, 1, ..., 0)}

i.e we are considering the set of vectors in which exactly one coordinate is 0. Note
that the ith coordinate of oi is 0, and all the other coordinates are 1. Now, let
g : {oi : 1 ≤ i ≤ d} → {0, 1} be any classifier. Let {i1, ..., ir} be the set of indices for
which g(oi1) = · · · = g(oir) = 1, and let {j1, ..., jd−r} = [d] − {i1, ..., ir} be the set of
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all those indices for which g(oj1) = · · · = g(ojd−r
). First, suppose r = 0. In that case,

we let h be the all negative classifier. Clearly, h ∈ Hd
mcon and we have

h|{o1,...,od} = g

Next, suppose r = d, i.e d− r = 0. In that case, we let h be the all ones classifier, i.e
the conjunction corresponding to h is empty. Again, h ∈ Hd

mcon, and again

h|{o1,...,od} = g

So, we assume that 0 < r < d. In that case, we consider the following conjunction.

h(x1, .., xd) = xj1 ∧ xj2 ∧ · · · ∧ xjd−r

Clearly, again we have h ∈ Hd
mcon and again

h|{o1,...,od} = g

Since g was arbitrary, we have shown that the class Hd
mcon shatters the set {o1, ...,dd}.

Hence, combining all the facts above, we see that

VCdim(Hd
mcon) = d

and this proves the claim.

Lemma 0.1. Suppose 0.x1x2x3... is the binary representation of x ∈ (0, 1). Then, for
any natural number m,

dsin(2mπx)e = (1− xm)

if there is some k ≥ m s.t xk = 1. Here, the convention is d−1e = 0.

Proof. We have the following.

sin(2mπx) = sin(2mπ(0.x1x2x3...))

= sin(2π(x1x2...xm−1.xmxm+1...))

= sin(2π(x1x2...xm−1.xmxm+1...)− 2π(x1x2...xm−1.0))

= sin(2π(0.xmxm+1...))

where in the second last step we have used the periodicity of sin. Now, we consider
two cases.

(1) In the first case, suppose xm = 0. In that case, 0.xmxm+1... <
1
2
, and hence

2π(0.xmxm+1...) < π. Also, because there is some k ≥ m with xk = 1, we have
that 0.xmxm+1... > 0. This means that 2π(0.xmxm+1...) ∈ (0, π), and hence
the sin of this number is positive, implying that

dsin(2mπx)e = 1 = 1− xm

(2) In the second case, suppose xm = 1. In this case, we see that 2π(0.xmxm+1...) ∈
[π, 2π), and hence sin of this quantity is non-positive. By our convention, this
clearly means that

dsin(2mπx)e = 0 = 1− xm

So in all cases, the given equality holds, and this completes the proof. ■
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Problem 3 (Problem 6.8 of book). Let X = R, and define

H = {x 7→ dsin(θx)e : θ ∈ R}

with the convention that d−1e = 0. We now prove that VCdim(H) =∞.
Let n ∈ N be any natural number. We will exhibit a set {x1, ..., xn} ⊂ [0, 1]

shattered by H. To do so, we will use Lemma 0.1. Consider all the 2n possible
labellings of n numbers (i.e we consider all vectors in the set {0, 1}n); enumerate this
set in the usual dictionary order, i.e

{0, 1}n = {v1, v2, ..., v2n}

where v1 = (0, 0, ..., 0) and v2n = (1, 1, 1, ..., 1). . The fact that v2n is the all 1s vector
will be important to us.

Define x1, ..., xn ∈ (0, 1) as follows: write down each xi in a separate line; each xi

will have a binary representation of the form 0.ai,1ai,2ai,3 · · · ai,2n ; moreover, we choose
the binary representations such that for each 1 ≤ j ≤ 2n,

(a1,j, a2,j, ..., an,j) = vj

i.e the jth column of bits is the vector vj. A pictorial representation of these numbers
is given below.

x1 = 0.0 · · · 1
x2 = 0.0 · · · 1

...
xn = 0.0 · · · 1

Now, suppose 1 ≤ m′ ≤ 2n. Then, by Lemma 0.1, we know that⌈
sin(2m′

πxi)
⌉
= (1− ai,m′)(0.1)

where we are using the fact that xi,2n = 1 for each i (i.e the k in the statement of the
lemma is k = 2n).

What this means is the following: let vm for 1 ≤ m ≤ 2n be any labelling. Consider
the labelling vm, i.e the labelling obtained by flipping all bits of vm, or equivalently,
applying the function x 7→ 1−x to each bit of the vector vm. Clearly, vm is a labelling
too, and hence there is some 1 ≤ m′ ≤ 2n such that vm = vm′ . So, to obtain the
labelling vm, we just consider the hypothesis

h(x) =
⌈
sin(2m′

πx)
⌉

Then, by equation (0.1) that we showed above, we have

h(xi) = 1− ai,m′ = 1− (vm′)i = (vm)i

and hence the hypothesis h ∈ H labels the points according to the labelling vm. So,
we have shown that all the labellings can be obtained by restricting functions in H to
these set of points. Since n was arbitrary, it follows that

VCdim(H) =∞

and this completes the proof.
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Problem 4 (Problem 9.4 of book). Let m > 1 be any integer. Let R =
√
m > 1,

and let w∗ = (0, 0, 1). We will produce examples (xi, yi) for 1 ≤ i ≤ m where each xi

is of the form (ai, bi, 1) with a2i + b2i + 1 = R2. Also, observe that for such examples,
we have

yi((w
∗)Txi) = y2i = 1

and hence the constant B in the statement of the upper bound is atmost 1. The
perceptron algorithm guarantees atmost (RB)2 ≤ R2 = m mistakes; we will produce
these examples so that the perceptron makes exactly R2 = m mistakes.

Suppose wt−1 is the separator vector when we enter time step t. The perceptron
initialises w0 = 0. At each round t, we will give an example (xt, 1) where xt = (at, bt, 1)
such that a2t + b2t + 1 = R2 and wT

t−1xt = 0, i.e the perceptron makes a mistake at
time step t on the tth example.

Our first point x1 will be
x1 = (

√
R2 − 1, 0, 1)

Clearly,
wT

0 x1 = 0Tx1 = 0

So, the perceptron will do the update
w1 ← w0 + x1 = x1

and so observe that w1 is a vector of the form (α, β, 1) where α, β are some scalars.
Also, note that

||w1||2 = ||x1||2 = R2 = 1 ·R2

Now suppose all the examples till time step t−1 have been given, where R2 ≥ t > 1
such that wt−1 = (αt−1, βt−1, t− 1) where αt−1, βt−1 are scalars and

||wt−1||2 = (t− 1) ·R2

The above equation just means
α2
t−1 + β2

t−1 + (t− 1)2 = (t− 1)R2

which implies
α2
t−1 + β2

t−1 = (t− 1)[R2 − t+ 1]

Because t ≤ R2 the above quantity is non-negative and makes sense.
We will now give a way to come up with example xt such that the same equalities

continue to hold. Consider the matrix Mt−1 defined as follows.

Mt−1 =


αt−1√

(t−1)[R2−t+1]

βt−1√
(t−1)[R2−t+1]

0

−βt−1√
(t−1)[R2−t+1]

αt−1√
(t−1)[R2−t+1]

0

0 0 1


Mt−1 is nothing but the rotation matrix that rotates wt−1 about the z-axis to make
the y-coordinate of wt−1 zero. This will be useful as it will simplify our calculation.
It is clear that

M−1
t−1 =


αt−1√

(t−1)[R2−t+1]

−βt−1√
(t−1)[R2−t+1]

0

βt−1√
(t−1)[R2−t+1]

αt−1√
(t−1)[R2−t+1]

0

0 0 1


Now, it is easy to observe that

w′
t−1 = Mt−1wt−1 = Mt−1(αt−1, βt−1, 1) = (

√
(t− 1)[R2 − t+ 1], 0, (t− 1))
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where the above equation is matrix multiplication. Let Pt−1 be the quantity

Pt−1 =
√
(t− 1)[R2 − t+ 1]

So, we see that
w′

t−1 = (Pt−1, 0, (t− 1))

Now consider the rotated vector w′
t−1. Based on this vector, we will choose our new

point xt. Suppose the point xt is (a′t, b
′
t, 1) = x′

t in the rotated coordinate system. We
choose

a′t =
−(t− 1)

Pt−1

Then, observe that

(w′
t−1)

T (a′t, b
′
t, 1) =

−(t− 1)

Pt−1

· Pt−1 + 0 + (t− 1) = 0

i.e perceptron will make a mistake at the point (a′t, b
′
t, 1). Now, observe that

a′2t + 1 =
(t− 1)2

P 2
t−1

+ 1 =
(t− 1)

R2 − t+ 1
+ 1 =

R2

R2 − t+ 1
≤ R2

where we have used the fact that t ≤ R2. So, the quantity√
R2 − a′2t − 1

makes sense, and if we put
b′t =

√
R2 − a′2t − 1

then we will have
a′2t + b′2t + 1 = R2

So, the coordinates of the point xt in the rotated coordinate system are

x′
t =

(
−(t− 1)

Pt−1

,

√
R2 − (t− 1)2

P 2
t−1

− 1, 1

)
So in the original coordinate system, the coordinates of xt are

xt = M−1
t−1x

′
t

Since rotations preserve norm, we see that
||xt||2 = ||x′

t||
2
= a′2t + b′2t + 1 = R2

So, as promised initially, xt is a point of the form (at, bt, 1) with a2t + b2t + 1 = R2.
Moreover, since rotations preserve inner products, we see that

0 = (w′
t−1)

Tx′
t = wT

t−1xt

i.e the perceptron will make a mistake at time step t. Also, the above equation means
that wt−1 and xt are orthogonal to each other. The update will be

wt ← wt−1 + xt

and hence wt will be a vector of the form wt = (αt, βt, t) as we wanted.
Finally by Pythagoras Theorem, we have

||wt||2 = ||wt−1||2 + ||xt||2 = (t− 1) ·R2 +R2 = t ·R2

and hence we have successfully shown how to construct the tth point xt. This way, for
all 1 ≤ t ≤ R2 = m, we have produced examples xt such that the perceptron makes
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a mistake at every step, i.e the perceptron makes exactly m mistakes. This completes
the construction.

Problem 6 (Problem 10.1 of book). In this problem, we will use Corollary 4.6
of the book, which states the following (we have also proven this in class): let H be a
finite hypothesis class, Z a domain, and l : H → Z → [0, 1] be a loss function. Then,
H is agnostically PAC learnable using ERM with sample complexity

mH(ϵ, δ) ≤
⌈
2 log(2|H|/δ)

ϵ2

⌉
We now solve the problem. Let A be an algorithm such that the following is true:

there is some δ0 ∈ (0, 1) and a function mH : (0, 1)→ N such that for every ϵ ∈ (0, 1),
if m ≥ mH(ϵ) then for every distribution D it holds that with probability atleast 1−δ0,

LD(A(S)) ≤ min
h∈H

LD(h) + ϵ

We will come up with a procedure that uses A and learns H in the usual agnostic
PAC learning model, i.e we will boost the confidence parameter δ. We will also show
that to do this the sample complexity has the following upper bound.

mH(ϵ, δ) ≤ kmH(ϵ) +

⌈
2 log (4k/δ)

ϵ2

⌉
Above,

k =

⌈ log(δ)
log(δ0)

− 1

log(δ0)

⌉
We do the following: we divide our data into k + 1 chunks. The first k chunks will
consist of mH(ϵ/2) examples. We will describe the last chunk later.

Now, we run the algorithm A on the first k chunks to obtain outputs h1, ..., hk. Note
that by the guarantees of algortihm A, we know that for each i,

P
[
LD(hi) ≤ min

h∈H
LD(h) +

ϵ

2

]
≥ 1− δ0

These means that

P
[
LD(hi) > min

h∈H
LD(h) +

ϵ

2
, ∀1 ≤ i ≤ k

]
≤ δk0(0.2)

≤ δ
log(δ)

log(δ0)
− 1

log(δ0)
0(0.3)

= 2log(δ)−1(0.4)

=
δ

2
(0.5)

The above inequality implies that

P
[

min
1≤i≤k

LD(hi) ≤ min
h∈H

LD(h) +
ϵ

2

]
≥ 1− δ

2

Now let us describe what we do with the k + 1th chunk. We let the size of this
chunk be q ⌈

2 log(4k/δ)
ϵ2

⌉
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Then, we will run ERM with this chunk over the hypothesis class {h1, ..., hk}. Suppose
the output of this is ĥ. Clearly, this is a finite hypothesis class of size k. Now, note
that Corollary 4.6 (mentioned in the very beginning) guarantees that

m{h1,...,hk}(ϵ/2, δ/2) ≤
⌈
2 log(4| {h1, ..., hk} |/δ)

ϵ2

⌉
=

⌈
2 log(4k/δ)

ϵ2

⌉
This means that with probability atmost δ

2
, running ERM over the class {h1, ..., hk}

on the k + 1th chunk results in ĥ such that
LD(ĥ) > min

i∈[k]
LD(hi) +

ϵ

2
(0.6)

Using (0.5) and (0.6) and a simple union bound, we see that

P
[
LD(hi) > min

h∈H
LD(h) +

ϵ

2
, ∀1 ≤ i ≤ k or LD(ĥ) > min

i∈[k]
LD(hi) +

ϵ

2

]
≤ δ

This means that

P
[
LD(hi) ≤ min

h∈H
LD(h) +

ϵ

2
, ∀1 ≤ i ≤ k and LD(ĥ) ≤ min

i∈[k]
LD(hi) +

ϵ

2

]
≥ 1− δ

which is equivalent to saying that

P
[
LD(ĥ) ≤ min

h∈H
LD(h) + ϵ

]
≥ 1− δ

and this is nothing but the requirement in the definition of agnostic PAC learning. So,
we’ve shown a successful PAC learner.

Now, the sample complexity is simply mH(ϵ/2) times k, plus the size of the k+1th
chunk, i.e the sample complexity is

mH(ϵ, δ) ≤ kmH(ϵ/2) +

⌈
2log(2k/δ)

ϵ2

⌉


	Problem 1 (Problem 6.2 of book)
	Problem 2 (Problem 6.6 of book)
	Problem 3 (Problem 6.8 of book)
	Problem 4 (Problem 9.4 of book)
	Problem 6 (Problem 10.1 of book)

