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(1) Problem 7.4 of the book. Let H be some hypothesis class, and for h ∈ H sup-
pose |h| denotes the description length of h. Because we are using the MDL paradigm,
we assume that the description language for the class H is prefix-free. Clearly, this
implies that H is countable; this is because the description function d : H → Σ∗ must
be injective. Since Σ∗ is countable, we immediately see that H is countable. So, we
will now assume that H =

⋃
n∈N {hn}. Also, the weight of hn is just 1

2|hn| (and as seen
in class, these weights add up to atmost 1 by Kraft Inequality).

For a sample set S of size m, let

hS ∈ argmin
h∈H

[
LS(h) +

√
|h|+ log(2/δ)

2m

]
For any B > 0, let

HB = {h ∈ H : |h| ≤ B}

and we also define

h∗
B = argmin

h∈HB

LD(h)

We will show that

LD(hS)− LD(h
∗
B) ≤ 2

√
B + log(2/δ)

2m
(0.1)

To prove this, we will use the following fact that was proven in class: if H =
⋃
Hn,

then with probability atleast 1 − δ over the choice of S ∼ Dm, the following bound
holds (simultaneously) for all n ∈ N and h ∈ Hn (this is Theorem 7.4 of the book).

|LD(h)− LS(h)| ≤ ϵn(m,w(n) · δ)

In the MDL paradigm, the function ϵn was the following.

ϵn(m, δ) =

√
log(2/δ)

2m

As we claimed above, if h ∈ Hn, then w(n) = 1
2|h|

. So, we see that with probability
atleast 1− δ over the choice of S ∼ Dm, the following holds for all n and h ∈ Hn.

|LD(h)− LS(h)| ≤ ϵn

(
m,

1

2|h|
δ

)
=

√
|h|+ log(2/δ)

2m
(0.2)
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So, for every B > 0, with probability of atleast 1 − δ over the choice of S ∼ Dm, we
have the following.

LD(hS) ≤ LS(hS) +

√
|hS|+ log(2/δ)

2m
(By inequality (0.2))

≤ LS(h
∗
B) +

√
|h∗

B|+ log(2/δ)
2m

(By defn. of hS)

≤ LD(h
∗
B) + 2

√
|h∗

B|+ log(2/δ)
2m

(Again by inequality (0.2))

≤ LD(h
∗
B) + 2

√
B + log(2/δ)

2m
(|h∗

B| ≤ B)

and hence it follows that

LD(hS)− LD(h
∗
B) ≤ 2

√
B + log(2/δ)

2m

and this proves our claim (0.1), completing the solution.

(2) Problem 7.5 of the book. Here we will solve all five parts of this problem.

1. Let A be a nonuniform learner for a class H. For each n ∈ N, we define
HA

n :=
{
h ∈ H : mNUL(0.1, 0.1, h) ≤ n

}
We will show that each class HA

n has finite VC dimension. Note that 0.1 < 1/8
and 0.1 < 1/7. Clearly, the definition of HA

n implies that with probability of atleast
1− 0.1 = 0.9 > 1− 1

7
over the choice of S ∼ Dn, it is true that

LD(A(S)) ≤ argmin
h∈HA

n

LD(h) + 0.1 < argmin
h∈HA

n

LD(h) + 1/8

In particular, if D is a distribution satisfying the realizability assumption w.r.t HA
n ,

we have that with probability of atleast 1− 1
7
, it is true that

LD(A(S)) <
1

8

But this clearly implies that the VC dimension of HA
n is finite; otherwise, by the No

Free Lunch Theorem (Theorem 5.1 of the book) there will be some distribution
D satisfying the realizability assumption w.r.t HA

n for which, with probability ≥ 1
7
, it

will be the case that

LD(A(S)) ≥
1

8
and that will be a contradiction to what we’ve seen above. So, it follows that
VCdim(HA

n ) < ∞.

2. Suppose a class H is nonuniformly learnable. From part 1., we see that each class
HA

n has finite VC dimension. Also, it is clear that

H =
⋃
n∈N

HA
n

and this proves this part.

3. Let H be a class that shatters an infinite set. Let {Hn} be a sequence of classes
such that H =

⋃
n∈N Hn. We show that there is some n for which VCdim(Hn) = ∞.
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Suppose the infinite set shattered by H is K. In addition, suppose {Hn} is a
sequence of classes each having a finite VC dimension. We claim that H \

⋃
n∈N Hn

is non-empty, and clearly that will prove our claim. We will define a sequence of sets
{Kn} as follows.

(1) Define K1 to be any finite subset of K such that |K1| > VCdim(H1).
(2) Suppose sets K1, ..., Ki have been defined, each of them being finite and sat-

isfying |Kj| > VCdim(Hj) for each 1 ≤ i ≤ j. Consider K \
⋃i

j=1 Kj; this is
still an infinite set. So, choose any finite subset Ki+1 of K \

⋃i
j=1 Kj such that

|Ki+1| > VCdim(Hi+1).
(3) Choosing the Kis as above ensures that all the Kis are mutually disjoint sets.

Now, take any n ∈ N, and consider the set Kn. Because Hn satisfies VCdim(Hn) <
|Kn|, we see that there is some function fn : Kn → {0, 1} such that no h ∈ Hn agrees
with fn on the domain Kn. Since n was arbitrary, we have thus obtained a sequence
of functions {fn} such that for any n, there is no hypothesis in Hn which agrees with
fn on Kn.

Now, consider the disjoint union
⊔∞

n=1 Kn. It is clear that this disjoint union is a
subset of K. Now, consider the function f ′ :

⊔∞
n=1 Kn → {0, 1} defined as follows.

f ′(x) = fn(x), if x ∈ Kn

f ′ is well defined because of the disjoint union. Now, because K is shattered by H, there
is some f ∈ H that agrees with f ′ on

⊔∞
n=1 Kn. But by our construction, no hypothesis

in Hn for any n ∈ N can agree with f ′; hence, it follows that f ∈ H \
⋃∞

n=1 Hn, and
this proves our claim, and also completes the proof.

4. We will now construct a class H1 of functions from the unit interval [0, 1] to
{0, 1} that is nonuniformly learnable but not PAC learnable. So, let our domain be
X = [0, 1]. For each n ∈ N, let Hn denote the class of unions of atmost n intervals; in
particular, the class Hn contains all indicator functions of subsets of [0, 1] which are
unions of atmost n closed intervals in [0, 1], i.e

Hn = {ha1,b1,...,an,bn : ai ≤ bi∀ i ∈ [n]}
where

ha1,b1,...,an,bn(x) =
n∧

i=1

1x∈[ai,bi]

We claim that VCdim(Hn) = 2n, and let us now prove this. Suppose z1 < z2 < · · · <
z2n is any set of points in [0, 1], and consider any labelling of these points. Suppose
the labelling is {y1, y2, ..., y2n}. The idea is two group the points into pairs of two;
so, we consider the groups {z1, z2} , {z3, z4} , ..., {z2n−1, z2n}. For each group, we use a
closed interval to shatter that group. For example, if {z1, z2} have labels {0, 0}, we
take [a1, b1] to be any interval such that b1 < z1. If the labels are {1, 1}, we take the
interval [a1, b1] = [z1, z2]. Like this, using one interval for each group, we can get the
desired labelling. So, it follows that VCdim(Hn) ≥ 2n.

Next, suppose z1 < z2 < · · · < z2n < z2n+1 is a set of 2n + 1 points in [0, 1]. We
claim that the labelling {1, 0, 1, 0, ..., 0, 1} cannot be obtained using the class Hn. Note
that to obtain such a labelling, the intervals have to be disjoint. Moreover, the interval
[ai, bi] will have to contain the point z2i−1, and it cannot contain the points z2i−2 or z2i.
So then it follows that the last point can never be contained in any of the n intervals;
so, this labelling cannot be attained. This shows that VCdim(Hn) = 2n.



4 SIDDHANT CHAUDHARY BMC201953

Now, let H1 =
⋃

n∈N Hn. It is clear that VCdim(H1) = ∞, and hence H1 is not
PAC learnable. But clearly, because each Hn has finite VC dimension, we know that
H1 is nonuniformly learnable by a theorem proved in class (namely a hypothesis class
is nonuniformly learnable if and only if it can be written as a countable union of
hypothesis classes satisfying the uniform convergence property). This completes our
construction.

5. Let H2 be the class of all functions from [0, 1] to {0, 1}. Clearly, the set [0, 1] is
shattered by H2, and also we know that the set [0, 1] is infinite. So, it must be true
that H2 is not nonuniformly learnable; if H2 were nonuniformly learnable, then by
part 2. of this problem, we can write H2 as a union of countably many classes of
finite VC dimension. But by part 3. of this problem, because H2 shatters an infinite
set, some class in this countable union must have infinite VC dimension, which is a
contradiction. So, it follows that H2 is not nonuniformly learnable.

(3) Problem 11.1 of the book. Suppose the the labels are chosen at random ac-
cording to P [y = 1] = P [y = 0] = 1/2. Let A be a learning algorithm as given in
the problem statement, i.e A returns the constant predictor h(x) = 1 if the parity of
the labels on the training set is 1 and otherwise the algorithm outputs the constant
predictor h(x) = 0.

Now suppose S is any training set. So, A(S) will be a constant hypothesis. Now
because A(S) is a constant function, we see that

LD(A(S)) =
1

2

This is simply because for point, A(S) will correctly classify it with probability 1/2,
because the labels are generated using the uniform distribution on two objects. So, it
follows that no matter what the set S is, the true error of the output A(S) will always
be 1/2.

Next, we will deal with two cases on the nature of the training set S.
(1) In the first case, suppose that the parity of the labels in S is 1. Fix any

singleton subset {(x0, y0)} ⊂ S (in other words, this denotes the leave-out set
during the 1-fold cross validation step). We have the following two subcases.
(a) In the first case, y0 = 0, i.e the parity of the labels in S \ {(x0, y0)} is 1.

In this case, when the algorithm A is trained on the set S \ {(x0, y0)}, it
returns the constant hypothesis A(S)(x) = 1. In this case, the leave-one-
out estimate of A(S) is simply 1 (because it makes an error on the point
x0).

(b) In the second case, we have y0 = 1, i.e the parity of the labels in S \
{(x0, y0)} is 0. In this case, the algorithm A returns the hypothesis
A(S)(x) = 0 when trained on S \ {(x0, y0)}. Again, it follows that the
leave-one-out estimate of A(S) in this case is simply 1 (because A(S)
makes an error on the point x0).

Now taking the average over all possible singleton subsets {(x0, y0)} of S, we
see that the estimate of the error of A(S) using leave-one-out validation is 1.

(2) In the second case, we the parity of the labels in S is 0. The same exact
analysis as above can be repeated, and in this case too, the estimate of the
error of A(S) using leave-one-out validation is 1 again.
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So in any case, the leave-one-out error estimate of A(S) is 1. So, it follows that the
difference between the error estimate of A(S) and the true error of A(S) is 1− 1

2
= 1

2
,

and this completes the solution of the problem.

(5) Problem 12.2 of the book. Let H = X =
{
x ∈ Rd : ||x|| ≤ B

}
, where B > 0

is some real constant. Let Y = {±1}. Let the loss function ℓ be defined as follows.
ℓ(w, (x, y)) = log(1 + e−ywTx)

We will now show that the resultant learning problem is convex-Lipschitz-bounded
and convex-smooth-bounded.

First, let us show that the learning problem is indeed a convex learning problem.
To do that, define the function g : R → R as follows.

g(z) = log(1 + e−z)

We claim that g is a convex function. Note that g is also differentiable on R, with the
derivative of g being

g′(z) =
−e−z

1 + e−z
=

−1

1 + ez

Also, g is infact twice differentiable, and the second derivative of g is the following.

g′′(z) =
ez

(1 + ez)2

So, we see that g′′ is positive everywhere on R. Hence, by the second derivative test
for convexity, it follows that g is convex.

Now, fix the data point (x, y), and consider the loss function ℓ as a function of w.
We can write

ℓ(w, (x, y)) = g(ywTx)

Then, by a theorem proved in class (which is Claim 12.4 of the book), we conclude
that ℓ is a convex function of w. So, this learning problem is really a convex learning
problem.

Now, for this fixed data point (x, y), define a function h : Rd → R as follows.
h(w) = ywTx

Observe that
∇wh(w) = yx

and hence
||∇h(w)|| = ||x|| ≤ B

and hence it follows that h is B-Lipschitz (see problem (7) of this homework, which
is solved later in this document).

Showing Convex-Lipschitz-Boundedness. Note that the hypothesis class H is bounded
by B (by definition), and it is also a convex domain. Next, the function g that we
defined above is 1-Lipschitz. This is easy to see because for all z ∈ R,

|g′(z)| =
∣∣∣∣ 1

1 + ez

∣∣∣∣ ≤ 1

Now, note that
ℓ(w, (x, y)) = g(h(w))
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and it follows that ℓ is 1 · B = B-Lipschitz (by a theorem on the Lipschitzness of
a composition of Lipschitz functions). So, it follows that this problem is Convex-
Lipschitz-Bounded with parameters B,B.

Showing Convex-Smooth-Boundedness. Again, as above, the hypothesis class H is
bounded by B, and it is also a convex domain. We claim that the function g de-
fined above is 1

4
-smooth. To see this, observe that

|g′′(z)| =
∣∣∣∣ ez

(1 + ez)2

∣∣∣∣
=

∣∣∣∣ ez

1 + 2ez + (ez)2

∣∣∣∣
=

∣∣∣∣ 1

2 + e−z + ez

∣∣∣∣
≤ 1

2 + 2

=
1

4

where above we have used the inequality ez + e−z ≥ 2 for all z ∈ R (which is a
simple implication of the AM-GM inequality). Hence, it follows that g is 1

4
-smooth

(by problem (7) of this assignment, which is solved later in this document).
Now, again, we know that

ℓ(w, (x, y)) = g(ywTx)

and hence we see that ℓ is 1
4
· ||x||2 = B2

4
smooth (this was also mentioned in class,

and this is Claim 12.9 of the book). So, it follows that this problem is a Convex-
Smooth-Bounded problem with parameters B2

4
, B. This completes the solution to the

problem.

(6). Consider the set of n × n matrices of rank k, where 1 ≤ k ≤ n. We will show
that this set is not convex. The proof is quite simple. Suppose M is a rank k matrix.
Clearly, −M is a rank k matrix as well. However, observe that

1

2
M +

1

2
(−M) = 0

does not have rank k (it has rank 0, and 1 ≤ k). So, this set is not convex.

(7). Let f : U → R be a differentiable function, where U ⊆ Rn is an open convex
set. Suppose that ||∇f(x)||2 ≤ G for all x ∈ U . We will show that f is Lipschitz
with Lipschitz constant G. So, suppose x,y are any two points in U . Define the map
γ : [0, 1] → Rn as follows.

γ(t) = x+ t(y − x)

Since U is convex, γ(t) ∈ U for all t ∈ [0, 1]. Now, let g : [0, 1] → R be the composition
f ◦γ. Clearly, because both γ and f are differentiable, g is also differentiable on (0, 1).
Moreover,

g′(t) = ∇f(γ(t))Tγ′(t) = ∇f(γ(t))T (y − x)

So, observe that for all t ∈ (0, 1), we have that
|g′(t)| = |∇f(γ(t))T (y − x)| ≤ ||∇f(γ(t))||2 · ||y − x||2 ≤ G ||y − x||2
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Also, by the Mean Value Theorem, we know that
g(1)− g(0) = g′(t)

for some t ∈ (0, 1). This means that for some t ∈ (0, 1),
f(y)− f(x) = g′(t)

and hence
|f(y)− f(x)| ≤ G ||y − x||2

Since x,y ∈ U were arbitrary, this shows that f is indeed G-Lipschitz. Infact, the
exact same proof holds for functions f : U → Rm as well, because there is a version
of the Mean Value Theorem for differentiable functions [a, b] → Rm.
(8) Problem 12.4 of the book. Given below are the solutions to the two parts of
the problem.

(a) Fix a turing machine T . First, suppose T halts on the input 0. Then, we see that
for h ∈ [0, 1],

ℓ(h, T ) = hℓ(0, T ) + (1− h)ℓ(1, T )

= h

In the second case, suppose T does not halt on input 1. Then, we see that for h ∈ [0, 1],
we have

ℓ(h, T ) = hℓ(0, T ) + (1− h)ℓ(1, T )

= (1− h)

In either case, ℓ(h, T ) is a linear function over H, and hence it is convex. Moreover,
the derivative of ℓ(h, T ) is always bounded above by 1 (easy to see from the above two
formulae), and hence ℓ is 1-Lipshitz. Finally, H = [0, 1], and it is trivially bounded.
So, this problem is a Convex-Lipschitz-Bounded problem.

(b) Couldn’t do this.
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