TFML HW-3

SIDDHANT CHAUDHARY
BMC201953

(1) Problem 7.4 of the book. Let \mathcal{H} be some hypothesis class, and for $h \in \mathcal{H}$ suppose $|h|$ denotes the description length of h. Because we are using the MDL paradigm, we assume that the description language for the class \mathcal{H} is prefix-free. Clearly, this implies that \mathcal{H} is countable; this is because the description function $d: \mathcal{H} \rightarrow \Sigma^{*}$ must be injective. Since Σ^{*} is countable, we immediately see that \mathcal{H} is countable. So, we will now assume that $\mathcal{H}=\bigcup_{n \in \mathbb{N}}\left\{h_{n}\right\}$. Also, the weight of h_{n} is just $\frac{1}{2^{\left|n_{n}\right|}}$ (and as seen in class, these weights add up to atmost 1 by Kraft Inequality).

For a sample set S of size m, let

$$
h_{S} \in \underset{h \in \mathcal{H}}{\operatorname{argmin}}\left[L_{S}(h)+\sqrt{\frac{|h|+\log (2 / \delta)}{2 m}}\right]
$$

For any $B>0$, let

$$
\mathcal{H}_{B}=\{h \in \mathcal{H}:|h| \leq B\}
$$

and we also define

$$
h_{B}^{*}=\underset{h \in \mathcal{H}_{B}}{\operatorname{argmin}} L_{\mathcal{D}}(h)
$$

We will show that

$$
\begin{equation*}
L_{\mathcal{D}}\left(h_{S}\right)-L_{\mathcal{D}}\left(h_{B}^{*}\right) \leq 2 \sqrt{\frac{B+\log (2 / \delta)}{2 m}} \tag{0.1}
\end{equation*}
$$

To prove this, we will use the following fact that was proven in class: if $\mathcal{H}=\bigcup \mathcal{H}_{n}$, then with probability atleast $1-\delta$ over the choice of $S \sim \mathcal{D}^{m}$, the following bound holds (simultaneously) for all $n \in \mathbb{N}$ and $h \in \mathcal{H}_{n}$ (this is Theorem 7.4 of the book).

$$
\left|L_{\mathcal{D}}(h)-L_{S}(h)\right| \leq \epsilon_{n}(m, w(n) \cdot \delta)
$$

In the MDL paradigm, the function ϵ_{n} was the following.

$$
\epsilon_{n}(m, \delta)=\sqrt{\frac{\log (2 / \delta)}{2 m}}
$$

As we claimed above, if $h \in \mathcal{H}_{n}$, then $w(n)=\frac{1}{2^{1 / n \mid}}$. So, we see that with probability atleast $1-\delta$ over the choice of $S \sim \mathcal{D}^{m}$, the following holds for all n and $h \in \mathcal{H}_{n}$.

$$
\begin{equation*}
\left|L_{\mathcal{D}}(h)-L_{S}(h)\right| \leq \epsilon_{n}\left(m, \frac{1}{2^{|h|}} \delta\right)=\sqrt{\frac{|h|+\log (2 / \delta)}{2 m}} \tag{0.2}
\end{equation*}
$$

$\overline{\text { Date: } 18 \text { December, } 2021 .}$

So, for every $B>0$, with probability of atleast $1-\delta$ over the choice of $S \sim \mathcal{D}^{m}$, we have the following.

$$
\begin{aligned}
L_{\mathcal{D}}\left(h_{S}\right) & \leq L_{S}\left(h_{S}\right)+\sqrt{\frac{\left|h_{S}\right|+\log (2 / \delta)}{2 m}} & & (\text { By inequality (0.2)) } \\
& \leq L_{S}\left(h_{B}^{*}\right)+\sqrt{\frac{\left|h_{B}^{*}\right|+\log (2 / \delta)}{2 m}} & & \text { (By defn. of } \left.h_{S}\right) \\
& \leq L_{\mathcal{D}}\left(h_{B}^{*}\right)+2 \sqrt{\frac{\left|h_{B}^{*}\right|+\log (2 / \delta)}{2 m}} & & \text { (Again by inequality (0.2)) } \\
& \leq L_{\mathcal{D}}\left(h_{B}^{*}\right)+2 \sqrt{\frac{B+\log (2 / \delta)}{2 m}} & & \left(\left|h_{B}^{*}\right| \leq B\right)
\end{aligned}
$$

and hence it follows that

$$
L_{\mathcal{D}}\left(h_{S}\right)-L_{\mathcal{D}}\left(h_{B}^{*}\right) \leq 2 \sqrt{\frac{B+\log (2 / \delta)}{2 m}}
$$

and this proves our claim (0.1), completing the solution.
(2) Problem 7.5 of the book. Here we will solve all five parts of this problem.

1. Let A be a nonuniform learner for a class \mathcal{H}. For each $n \in \mathbb{N}$, we define

$$
\mathcal{H}_{n}^{A}:=\left\{h \in \mathcal{H}: m^{\mathrm{NUL}}(0.1,0.1, h) \leq n\right\}
$$

We will show that each class \mathcal{H}_{n}^{A} has finite VC dimension. Note that $0.1<1 / 8$ and $0.1<1 / 7$. Clearly, the definition of \mathcal{H}_{n}^{A} implies that with probability of atleast $1-0.1=0.9>1-\frac{1}{7}$ over the choice of $S \sim \mathcal{D}^{n}$, it is true that

$$
L_{\mathcal{D}}(A(S)) \leq \underset{h \in \mathcal{H}_{n}^{A}}{\operatorname{argmin}} L_{\mathcal{D}}(h)+0.1<\underset{h \in \mathcal{H}_{n}^{A}}{\operatorname{argmin}} L_{\mathcal{D}}(h)+1 / 8
$$

In particular, if \mathcal{D} is a distribution satisfying the realizability assumption w.r.t \mathcal{H}_{n}^{A}, we have that with probability of atleast $1-\frac{1}{7}$, it is true that

$$
L_{\mathcal{D}}(A(S))<\frac{1}{8}
$$

But this clearly implies that the VC dimension of \mathcal{H}_{n}^{A} is finite; otherwise, by the No Free Lunch Theorem (Theorem 5.1 of the book) there will be some distribution \mathcal{D} satisfying the realizability assumption w.r.t \mathcal{H}_{n}^{A} for which, with probability $\geq \frac{1}{7}$, it will be the case that

$$
L_{\mathcal{D}}(A(S)) \geq \frac{1}{8}
$$

and that will be a contradiction to what we've seen above. So, it follows that $\operatorname{VCdim}\left(\mathcal{H}_{n}^{A}\right)<\infty$.
2. Suppose a class \mathcal{H} is nonuniformly learnable. From part 1., we see that each class \mathcal{H}_{n}^{A} has finite VC dimension. Also, it is clear that

$$
\mathcal{H}=\bigcup_{n \in \mathbb{N}} \mathcal{H}_{n}^{A}
$$

and this proves this part.
3. Let \mathcal{H} be a class that shatters an infinite set. Let $\left\{\mathcal{H}_{n}\right\}$ be a sequence of classes such that $\mathcal{H}=\bigcup_{n \in \mathbb{N}} \mathcal{H}_{n}$. We show that there is some n for which $\operatorname{VCdim}\left(\mathcal{H}_{n}\right)=\infty$.

Suppose the infinite set shattered by \mathcal{H} is K. In addition, suppose $\left\{\mathcal{H}_{n}\right\}$ is a sequence of classes each having a finite VC dimension. We claim that $\mathcal{H} \backslash \bigcup_{n \in \mathbb{N}} \mathcal{H}_{n}$ is non-empty, and clearly that will prove our claim. We will define a sequence of sets $\left\{K_{n}\right\}$ as follows.
(1) Define K_{1} to be any finite subset of K such that $\left|K_{1}\right|>\operatorname{VCdim}\left(\mathcal{H}_{1}\right)$.
(2) Suppose sets K_{1}, \ldots, K_{i} have been defined, each of them being finite and satisfying $\left|K_{j}\right|>\operatorname{VCdim}\left(\mathcal{H}_{j}\right)$ for each $1 \leq i \leq j$. Consider $K \backslash \bigcup_{j=1}^{i} K_{j}$; this is still an infinite set. So, choose any finite subset K_{i+1} of $K \backslash \bigcup_{j=1}^{i} K_{j}$ such that $\left|K_{i+1}\right|>\operatorname{VCdim}\left(\mathcal{H}_{i+1}\right)$.
(3) Choosing the $K_{i} \mathrm{~s}$ as above ensures that all the $K_{i} \mathrm{~s}$ are mutually disjoint sets. Now, take any $n \in \mathbb{N}$, and consider the set K_{n}. Because \mathcal{H}_{n} satisfies $\operatorname{VCdim}\left(\mathcal{H}_{n}\right)<$ $\left|K_{n}\right|$, we see that there is some function $f_{n}: K_{n} \rightarrow\{0,1\}$ such that no $h \in \mathcal{H}_{n}$ agrees with f_{n} on the domain K_{n}. Since n was arbitrary, we have thus obtained a sequence of functions $\left\{f_{n}\right\}$ such that for any n, there is no hypothesis in \mathcal{H}_{n} which agrees with f_{n} on K_{n}.

Now, consider the disjoint union $\bigsqcup_{n=1}^{\infty} K_{n}$. It is clear that this disjoint union is a subset of K. Now, consider the function $f^{\prime}: \bigsqcup_{n=1}^{\infty} K_{n} \rightarrow\{0,1\}$ defined as follows.

$$
f^{\prime}(x)=f_{n}(x), \quad \text { if } x \in K_{n}
$$

f^{\prime} is well defined because of the disjoint union. Now, because K is shattered by \mathcal{H}, there is some $f \in \mathcal{H}$ that agrees with f^{\prime} on $\bigsqcup_{n=1}^{\infty} K_{n}$. But by our construction, no hypothesis in \mathcal{H}_{n} for any $n \in \mathbb{N}$ can agree with f^{\prime}; hence, it follows that $f \in \mathcal{H} \backslash \bigcup_{n=1}^{\infty} \mathcal{H}_{n}$, and this proves our claim, and also completes the proof.
4. We will now construct a class \mathcal{H}_{1} of functions from the unit interval $[0,1]$ to $\{0,1\}$ that is nonuniformly learnable but not PAC learnable. So, let our domain be $\mathcal{X}=[0,1]$. For each $n \in \mathbb{N}$, let \mathcal{H}_{n} denote the class of unions of atmost n intervals; in particular, the class \mathcal{H}_{n} contains all indicator functions of subsets of $[0,1]$ which are unions of atmost n closed intervals in [0, 1], i.e

$$
\mathcal{H}_{n}=\left\{h_{a_{1}, b_{1}, \ldots, a_{n}, b_{n}}: a_{i} \leq b_{i} \forall i \in[n]\right\}
$$

where

$$
h_{a_{1}, b_{1}, \ldots, a_{n}, b_{n}}(x)=\bigwedge_{i=1}^{n} \mathbf{1}_{x \in\left[a_{i}, b_{i}\right]}
$$

We claim that $\operatorname{VCdim}\left(\mathcal{H}_{n}\right)=2 n$, and let us now prove this. Suppose $z_{1}<z_{2}<\cdots<$ $z_{2 n}$ is any set of points in $[0,1]$, and consider any labelling of these points. Suppose the labelling is $\left\{y_{1}, y_{2}, \ldots, y_{2 n}\right\}$. The idea is two group the points into pairs of two; so, we consider the groups $\left\{z_{1}, z_{2}\right\},\left\{z_{3}, z_{4}\right\}, \ldots,\left\{z_{2 n-1}, z_{2 n}\right\}$. For each group, we use a closed interval to shatter that group. For example, if $\left\{z_{1}, z_{2}\right\}$ have labels $\{0,0\}$, we take $\left[a_{1}, b_{1}\right]$ to be any interval such that $b_{1}<z_{1}$. If the labels are $\{1,1\}$, we take the interval $\left[a_{1}, b_{1}\right]=\left[z_{1}, z_{2}\right]$. Like this, using one interval for each group, we can get the desired labelling. So, it follows that VCdim $\left(\mathcal{H}_{n}\right) \geq 2 n$.

Next, suppose $z_{1}<z_{2}<\cdots<z_{2 n}<z_{2 n+1}$ is a set of $2 n+1$ points in [0, 1]. We claim that the labelling $\{1,0,1,0, \ldots, 0,1\}$ cannot be obtained using the class \mathcal{H}_{n}. Note that to obtain such a labelling, the intervals have to be disjoint. Moreover, the interval $\left[a_{i}, b_{i}\right]$ will have to contain the point $z_{2 i-1}$, and it cannot contain the points $z_{2 i-2}$ or $z_{2 i}$. So then it follows that the last point can never be contained in any of the n intervals; so, this labelling cannot be attained. This shows that $\operatorname{VCdim}\left(\mathcal{H}_{n}\right)=2 n$.

Now, let $\mathcal{H}_{1}=\bigcup_{n \in \mathbb{N}} \mathcal{H}_{n}$. It is clear that $\operatorname{VCdim}\left(\mathcal{H}_{1}\right)=\infty$, and hence \mathcal{H}_{1} is not PAC learnable. But clearly, because each \mathcal{H}_{n} has finite VC dimension, we know that \mathcal{H}_{1} is nonuniformly learnable by a theorem proved in class (namely a hypothesis class is nonuniformly learnable if and only if it can be written as a countable union of hypothesis classes satisfying the uniform convergence property). This completes our construction.
5. Let \mathcal{H}_{2} be the class of all functions from $[0,1]$ to $\{0,1\}$. Clearly, the set $[0,1]$ is shattered by \mathcal{H}_{2}, and also we know that the set $[0,1]$ is infinite. So, it must be true that \mathcal{H}_{2} is not nonuniformly learnable; if \mathcal{H}_{2} were nonuniformly learnable, then by part 2. of this problem, we can write \mathcal{H}_{2} as a union of countably many classes of finite VC dimension. But by part 3. of this problem, because \mathcal{H}_{2} shatters an infinite set, some class in this countable union must have infinite VC dimension, which is a contradiction. So, it follows that \mathcal{H}_{2} is not nonuniformly learnable.
(3) Problem 11.1 of the book. Suppose the the labels are chosen at random according to $\mathbf{P}[y=1]=\mathbf{P}[y=0]=1 / 2$. Let A be a learning algorithm as given in the problem statement, i.e A returns the constant predictor $h(\boldsymbol{x})=1$ if the parity of the labels on the training set is 1 and otherwise the algorithm outputs the constant predictor $h(\boldsymbol{x})=0$.
Now suppose S is any training set. So, $A(S)$ will be a constant hypothesis. Now because $A(S)$ is a constant function, we see that

$$
L_{\mathcal{D}}(A(S))=\frac{1}{2}
$$

This is simply because for point, $A(S)$ will correctly classify it with probability $1 / 2$, because the labels are generated using the uniform distribution on two objects. So, it follows that no matter what the set S is, the true error of the output $A(S)$ will always be $1 / 2$.

Next, we will deal with two cases on the nature of the training set S.
(1) In the first case, suppose that the parity of the labels in S is 1 . Fix any singleton subset $\left\{\left(\boldsymbol{x}_{0}, y_{0}\right)\right\} \subset S$ (in other words, this denotes the leave-out set during the 1 -fold cross validation step). We have the following two subcases.
(a) In the first case, $y_{0}=0$, i.e the parity of the labels in $S \backslash\left\{\left(\boldsymbol{x}_{0}, y_{0}\right)\right\}$ is 1 . In this case, when the algorithm A is trained on the set $S \backslash\left\{\left(\boldsymbol{x}_{0}, y_{0}\right)\right\}$, it returns the constant hypothesis $A(S)(\boldsymbol{x})=1$. In this case, the leave-oneout estimate of $A(S)$ is simply 1 (because it makes an error on the point \boldsymbol{x}_{0}).
(b) In the second case, we have $y_{0}=1$, i.e the parity of the labels in $S \backslash$ $\left\{\left(\boldsymbol{x}_{0}, y_{0}\right)\right\}$ is 0 . In this case, the algorithm A returns the hypothesis $A(S)(\boldsymbol{x})=0$ when trained on $S \backslash\left\{\left(\boldsymbol{x}_{0}, y_{0}\right)\right\}$. Again, it follows that the leave-one-out estimate of $A(S)$ in this case is simply 1 (because $A(S)$ makes an error on the point \boldsymbol{x}_{0}).
Now taking the average over all possible singleton subsets $\left\{\left(\boldsymbol{x}_{0}, y_{0}\right)\right\}$ of S, we see that the estimate of the error of $A(S)$ using leave-one-out validation is 1 .
(2) In the second case, we the parity of the labels in S is 0 . The same exact analysis as above can be repeated, and in this case too, the estimate of the error of $A(S)$ using leave-one-out validation is 1 again.

So in any case, the leave-one-out error estimate of $A(S)$ is 1 . So, it follows that the difference between the error estimate of $A(S)$ and the true error of $A(S)$ is $1-\frac{1}{2}=\frac{1}{2}$, and this completes the solution of the problem.
(5) Problem 12.2 of the book. Let $\mathcal{H}=\mathcal{X}=\left\{\boldsymbol{x} \in \mathbf{R}^{d}:\|\boldsymbol{x}\| \leq B\right\}$, where $B>0$ is some real constant. Let $\mathcal{Y}=\{ \pm 1\}$. Let the loss function ℓ be defined as follows.

$$
\ell(\boldsymbol{w},(\boldsymbol{x}, y))=\log \left(1+e^{-y \boldsymbol{w}^{T} \boldsymbol{x}}\right)
$$

We will now show that the resultant learning problem is convex-Lipschitz-bounded and convex-smooth-bounded.

First, let us show that the learning problem is indeed a convex learning problem. To do that, define the function $g: \mathbf{R} \rightarrow \mathbf{R}$ as follows.

$$
g(z)=\log \left(1+e^{-z}\right)
$$

We claim that g is a convex function. Note that g is also differentiable on \mathbf{R}, with the derivative of g being

$$
g^{\prime}(z)=\frac{-e^{-z}}{1+e^{-z}}=\frac{-1}{1+e^{z}}
$$

Also, g is infact twice differentiable, and the second derivative of g is the following.

$$
g^{\prime \prime}(z)=\frac{e^{z}}{\left(1+e^{z}\right)^{2}}
$$

So, we see that $g^{\prime \prime}$ is positive everywhere on \mathbf{R}. Hence, by the second derivative test for convexity, it follows that g is convex.

Now, fix the data point (\boldsymbol{x}, y), and consider the loss function ℓ as a function of \boldsymbol{w}. We can write

$$
\ell(\boldsymbol{w},(\boldsymbol{x}, y))=g\left(y \boldsymbol{w}^{T} \boldsymbol{x}\right)
$$

Then, by a theorem proved in class (which is Claim 12.4 of the book), we conclude that ℓ is a convex function of \boldsymbol{w}. So, this learning problem is really a convex learning problem.

Now, for this fixed data point (\boldsymbol{x}, y), define a function $h: \mathbf{R}^{d} \rightarrow \mathbf{R}$ as follows.

$$
h(\boldsymbol{w})=y \boldsymbol{w}^{T} \boldsymbol{x}
$$

Observe that

$$
\nabla_{\boldsymbol{w}} h(\boldsymbol{w})=y \boldsymbol{x}
$$

and hence

$$
\|\nabla h(\boldsymbol{w})\|=\|\boldsymbol{x}\| \leq B
$$

and hence it follows that h is B-Lipschitz (see problem (7) of this homework, which is solved later in this document).
Showing Convex-Lipschitz-Boundedness. Note that the hypothesis class \mathcal{H} is bounded by B (by definition), and it is also a convex domain. Next, the function g that we defined above is 1 -Lipschitz. This is easy to see because for all $z \in \mathbf{R}$,

$$
\left|g^{\prime}(z)\right|=\left|\frac{1}{1+e^{z}}\right| \leq 1
$$

Now, note that

$$
\ell(\boldsymbol{w},(\boldsymbol{x}, y))=g(h(\boldsymbol{w}))
$$

and it follows that ℓ is $1 \cdot B=B$-Lipschitz (by a theorem on the Lipschitzness of a composition of Lipschitz functions). So, it follows that this problem is Convex-Lipschitz-Bounded with parameters B, B.
Showing Convex-Smooth-Boundedness. Again, as above, the hypothesis class \mathcal{H} is bounded by B, and it is also a convex domain. We claim that the function g defined above is $\frac{1}{4}$-smooth. To see this, observe that

$$
\begin{aligned}
\left|g^{\prime \prime}(z)\right| & =\left|\frac{e^{z}}{\left(1+e^{z}\right)^{2}}\right| \\
& =\left|\frac{e^{z}}{1+2 e^{z}+\left(e^{z}\right)^{2}}\right| \\
& =\left|\frac{1}{2+e^{-z}+e^{z}}\right| \\
& \leq \frac{1}{2+2} \\
& =\frac{1}{4}
\end{aligned}
$$

where above we have used the inequality $e^{z}+e^{-z} \geq 2$ for all $z \in \mathbf{R}$ (which is a simple implication of the AM-GM inequality). Hence, it follows that g is $\frac{1}{4}$-smooth (by problem (7) of this assignment, which is solved later in this document).

Now, again, we know that

$$
\ell(\boldsymbol{w},(\boldsymbol{x}, y))=g\left(y \boldsymbol{w}^{T} \boldsymbol{x}\right)
$$

and hence we see that ℓ is $\frac{1}{4} \cdot\|\boldsymbol{x}\|^{2}=\frac{B^{2}}{4}$ smooth (this was also mentioned in class, and this is Claim 12.9 of the book). So, it follows that this problem is a Convex-Smooth-Bounded problem with parameters $\frac{B^{2}}{4}, B$. This completes the solution to the problem.
(6). Consider the set of $n \times n$ matrices of rank k, where $1 \leq k \leq n$. We will show that this set is not convex. The proof is quite simple. Suppose M is a rank k matrix. Clearly, $-M$ is a rank k matrix as well. However, observe that

$$
\frac{1}{2} M+\frac{1}{2}(-M)=0
$$

does not have rank k (it has rank 0 , and $1 \leq k$). So, this set is not convex.
(7). Let $f: U \rightarrow \mathbf{R}$ be a differentiable function, where $U \subseteq \mathbf{R}^{n}$ is an open convex set. Suppose that $\|\nabla f(\boldsymbol{x})\|_{2} \leq G$ for all $\boldsymbol{x} \in U$. We will show that f is Lipschitz with Lipschitz constant G. So, suppose $\boldsymbol{x}, \boldsymbol{y}$ are any two points in U. Define the map $\gamma:[0,1] \rightarrow \mathbf{R}^{n}$ as follows.

$$
\gamma(t)=\boldsymbol{x}+t(\boldsymbol{y}-\boldsymbol{x})
$$

Since U is convex, $\gamma(t) \in U$ for all $t \in[0,1]$. Now, let $g:[0,1] \rightarrow \mathbf{R}$ be the composition $f \circ \gamma$. Clearly, because both γ and f are differentiable, g is also differentiable on $(0,1)$. Moreover,

$$
g^{\prime}(t)=\nabla f(\gamma(t))^{T} \gamma^{\prime}(t)=\nabla f(\gamma(t))^{T}(\boldsymbol{y}-\boldsymbol{x})
$$

So, observe that for all $t \in(0,1)$, we have that

$$
\left|g^{\prime}(t)\right|=\left|\nabla f(\gamma(t))^{T}(\boldsymbol{y}-\boldsymbol{x})\right| \leq\|\nabla f(\gamma(t))\|_{2} \cdot\|\boldsymbol{y}-\boldsymbol{x}\|_{2} \leq G\|\boldsymbol{y}-\boldsymbol{x}\|_{2}
$$

Also, by the Mean Value Theorem, we know that

$$
g(1)-g(0)=g^{\prime}(t)
$$

for some $t \in(0,1)$. This means that for some $t \in(0,1)$,

$$
f(\boldsymbol{y})-f(\boldsymbol{x})=g^{\prime}(t)
$$

and hence

$$
|f(\boldsymbol{y})-f(\boldsymbol{x})| \leq G\|\boldsymbol{y}-\boldsymbol{x}\|_{2}
$$

Since $\boldsymbol{x}, \boldsymbol{y} \in U$ were arbitrary, this shows that f is indeed G-Lipschitz. Infact, the exact same proof holds for functions $f: U \rightarrow \mathbf{R}^{m}$ as well, because there is a version of the Mean Value Theorem for differentiable functions $[a, b] \rightarrow \mathbf{R}^{m}$.
(8) Problem 12.4 of the book. Given below are the solutions to the two parts of the problem.
(a) Fix a turing machine T. First, suppose T halts on the input 0 . Then, we see that for $h \in[0,1]$,

$$
\begin{aligned}
\ell(h, T) & =h \ell(0, T)+(1-h) \ell(1, T) \\
& =h
\end{aligned}
$$

In the second case, suppose T does not halt on input 1. Then, we see that for $h \in[0,1]$, we have

$$
\begin{aligned}
\ell(h, T) & =h \ell(0, T)+(1-h) \ell(1, T) \\
& =(1-h)
\end{aligned}
$$

In either case, $\ell(h, T)$ is a linear function over \mathcal{H}, and hence it is convex. Moreover, the derivative of $\ell(h, T)$ is always bounded above by 1 (easy to see from the above two formulae), and hence ℓ is 1-Lipshitz. Finally, $\mathcal{H}=[0,1]$, and it is trivially bounded. So, this problem is a Convex-Lipschitz-Bounded problem.
(b) Couldn't do this.

