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1. Introduction

1.1. A Formal Model. In this section, we will set up the basic notation and formalise
our learning model.

Definition 1.1. The domain set is the set of objects that we wish to label. This will
be denoted by X . Usually, the domain points are represented by a vector of features.
The label set is the possible set of labels. This set will be denoted by Y . For example,
in many classification tasks, Y = {1,−1}.

Definition 1.2. The training data is a set of pairs in X × Y . This is the data that
we use to train our learning algorithm.

Definition 1.3. The learner has the job of outputting a prediction rule h : X → Y .
This function is called the hypothesis or classifier. If the training data is S, then we
the hypothesis returned by the learner is denoted by hS.

Definition 1.4. The labelling function is a map f : X → Y , which describes the
correct labels for each element of the domain. Moreover, for each (xi, yi) ∈ S, we must
have f(xi) = yi. Also, it is assumed that the points are sampled from the domain set
according to some distribution D on X . Note that the labelling function f and the
distribution D are unknown to the learner.

Definition 1.5. For a hypothesis h : X → Y , the generalisation error of h with
respect to the labelling f is defined to be

L(D,f)(h) := P
x∼D

[h(x) 6= f(x)]

All these definitions capture our learning model.

1.2. Empirical Risk Minimization. As before, suppose our domain set is X , and
the label set be Y . Let S be the training data set. Let the distribution for sampling
points from X be D. Our learning outputs a predictor hS : X → Y , and the goal
of the learning algorithm is to minimize the generalisation error with respect to the
unknown D and f .

Since the learner does not know D and f , the learner can’t calculate the true error.
However, the learner can calculate the so called training error, using the training data
set S. The training error, or empirical error, or empirical risk, is defined as follows.

LS(h) :=
|{i ∈ [m] : h(xi) 6= yi}|

m

Here m = |S|. Coming up with an algorithm which minimizes empirical risk is called
empirical risk minimization (ERM), and often is not the best of ideas; sometimes,
ERM leads to overfitting.

1.3. ERM with Inductive Bias. Inductive bias, in simple words, means prior knowl-
edge. We will show soon that ERM along with inductive bias leads to a good predictor;
one that does not overfit, and performs reasonably well on test data.

Formally, we restrict the choice of hypothesis functions to a set of functions H,
which we call the hypothesis class. Each h ∈ H is a function X → Y . For a given
training data set S, ERM over this hypothesis class chooses a function hS ∈ H which
minimizes the empirical risk; formally, the output of ERM with inductive bias is

ERMH(S) ∈ argmin
h∈H

LS(h)
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So, we are biasing our learner to a certain class of functions. We will soon show, via
the No Free Lunch Theorem, that without some inductive bias, reasonable learning is
impossible.

1.4. Finite Hypothesis Classes. Our first restriction to the hypothesis class will be
restricting H to be a finite set, i.e |H| < ∞. We can prove some nice results about
such classes by making an assumption, called the realizability assumption.

Definition 1.6. Let X ,Y , S,D, f and H have their usual meaning. The realizability
assumption is the assumption that there exists some h∗ ∈ H such that

L(D,f)(h
∗) = 0

This means that, with probability 1 over random samples from X (and hence S),
h∗(x) = y, and hence

LS(h
∗) = 0

We also make the following assumption: the training set S by sampling m data
points from X using the distribution D, where the points are sampled independently
from each other. We use the notation S ∼ Dm. This is the so called i.i.d assumption.

1.4.1. The confidence parameter. By our assumption, we know that S is generated
randomly. So, hS is a random variable, and hence L(D,f)(hS) is a random variable too.
Sometimes, it may happen that the training set S does not represent the domain set
X truly. For example, S may contain only noisy data, which will ofcourse not result
in a good hypothesis. To handle this, we associate a parameter δ with our sample
data; formally, δ is the probability that the training data S is unrepresentative of the
distribution. So, 1 − δ is the confidence parameter of our prediction. Formally, bad
representative training sets S have the property that

L(D,f)(hS) > ϵ

where ϵ is the accuracy parameter which we define below.

1.4.2. The accuracy parameter. Since we cannot guarantee perfect label prediction,
we introduce another parameter associated with the quality of the prediciion. This
paremeter, denoted by ϵ, is called the accuracy parameter. The event L(D,f)(hS) > ϵ
is regarded as failure of the learner, and the event L(D,f)(hS) ≤ ϵ is regarded as an
approximately correct predictor.

Now, we will show prove a very important theorem, namely the fact that if the
hypothesis class is finite and if sufficient training data is available, then ERM over this
hypothesis class leads to a good learner.

Theorem 1.1. Let H be a finite hypothesis class, i.e |H| <∞. Let δ ∈ (0, 1), and let
ϵ > 0. Let m be any integer that satisfies

m ≥ log(|H|/δ)
ϵ

Then, for any labelling function f , and for any distribution D for which the realizability
assumption holds, with confidence probability atleast 1 − δ over the choice of an i.i.d
training dataset S of size m, we have that for every ERM hypothesis hS, it holds that

L(D,f)(hS) ≤ ϵ

Mathematically,
P

S∼Dm

[
L(D,f)(hS) ≤ ϵ

]
≥ 1− δ
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In other words, given a sufficiently large data set, ERM leads to an approximately
correct predictor.

Proof. We will prove this theorem in a bunch of simple steps. As given in the theorem
statement, fix the distribution D and the labelling function f . Also, fix the confidence
and accuracy parameters 1− δ and ϵ.

First, let us define the set of bad hypothesis as follows.
HB :=

{
h ∈ H | L(D,f)(h) > ϵ

}
We will upper bound the probability of choosing training sets S which lead to a
classifier in HB being output by the ERM technique.

Suppose with the choice of some training set S, a classifier h′ in HB is output.
Because we are doing ERM, it must be true that LS(h

′) = 0; this is true because
of the realizability assumption. By the assumption, there is some h∗ ∈ H such that
LS(h

∗) = 0, and hence the only way ERM can lead to output h′ is if LS(h
′) = 0. Now,

let
M := {S | ∃h ∈ HB, LS(h) = 0}

Note that, M can be rewritten as the following, which is trivial.

M =
⋃

h∈HB

{S | LS(h) = 0}

Now, we want to upper bound the probality of the event L(D,f)(hS) > ϵ. By what we
have wrote in the above paragraph, this event is a subset of M (i.e the only way hS is
the ouput of S using ERM is if the empirical risk is 0). So,{

S |L(D,f)(hS) > ϵ
}
⊆M

So, it follows that
P

S∼Dm

[
L(D,f)(hS) > ϵ

]
≤ P

S∼Dm
[M ]

Now, by a simple union bound, we know that

P
S∼Dm

[M ] ≤
∑
h∈HB

P
S∼Dm

[{S | LS(h) = 0}]

Let us now bound each summand in the sum above. Fix some bad hypothesis h ∈ HB.
The event {S | LS(h) = 0} is the same as the event

{S | h(xi) = f(xi)∀i ∈ [m]}

So, we want to upper bound the probability
P

S∼Dm
[{S | h(xi) = f(xi)∀i ∈ [m]}]

Because h ∈ HB, for any x ∈ X , we know that
P

x∼D
[h(x) = f(x)] ≤ 1− ϵ

Since the points x1, ..., xm are genereted in an i.i.d way, we see that
P

S∼Dm
[{S | h(xi) = f(xi)∀i ∈ [m]}] ≤ (1− ϵ)m ≤ e−ϵm

where we have used the inequality 1− x ≤ e−x. So, it follows that
P

S∼Dm
[M ] ≤ |HB|e−ϵm ≤ |H|e−ϵm
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Since m ≥ log(|H|/δ)
ϵ

, we know that

ϵm ≥ log(|H|/δ)
which implies

e−ϵm ≤ δ/|H|
and hence

P
S∼Dm

[M ] ≤ δ

The claim follows from here. ■

2. PAC Learning

In the previous section, we proved that finite hypothesis classes, if provided with a
good number of training samples, can lead to good learners. However, we had to make
a crucial assumption in the proof: the realizability assumption. In this discussion, we
will try to get rid of this assumption.

2.1. Setting up the PAC model. As usual, let X ,Y be the domain and label set
respectively (for binary classification, we have Y = {0, 1}). From now on, we will
formally assume that D is a joint distribution on X × Y . This induces a marginal
distribution DX . In this setting, we will get rid of the labelling function that we used
in the previous discussion. Again, as before, the learner does not know anything about
the distribution D.

Definition 2.1. For a hypothesis h, we define the generalisation error of h as follows.
LD(h) := P

(x,y)∼D
[h(x) 6= y]

Given a training set S ∼ Dm, the definition of empirical risk remains the same as
before.

2.2. The Bayes Optimal Predictor. Suppose we are given a distribution D on
X × {0, 1}. Intuitively, the best predictor will be the following.

fD(x) =

1 , if P
(x,y)∼D

[y = 1 | x] ≥ 1

2
0 , otherwise

This is called the Bayes classifier. Intuitively, the Bayes classifier assigns that label
to a point whose probability mass is larger. Ofcourse the learner has no idea what the
Bayes classifier is, but we can still talk about it theoretically. This classifier is optimal
as the next result shows. Before proving the result, we prove a simple lemma.

Lemma 2.1. Let x ∈ X be fixed. Let g : X → {0, 1} = Y be any classifier, and let fD
be the Bayes classifier. Then,

P
Y∼DY|x

[g(X) = Y | X = x] ≤ P
Y∼DY|x

[fD(X) = Y | X = x]

Proof. To prove this, we will deal with the following two cases.
(1) In the first case, suppose that fD(x) = 1. By definition, this means that

P
Y∼DY|x

[Y = 1 | X = x] ≥ P
Y∼DY|x

[Y = 0 | X = x]
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Now, if g(x) = 1, then the claim trivially holds (because the two probabilities
are equal). If g(x) = 0, then the above inequality implies the inequality that
we want to prove.

(2) In the second case, we have fD(x) = 0. This case is symmetric to the above
case.

So the claim has been proven. ■

Proposition 2.2. Let Z = X × Y, where Y = {0, 1} and let D be any distribution
on Z. Then, the Bayes classifier fD is optimal, i.e if g : X → {0, 1} is any classifier,
then

LD(fD) ≤ LD(g)

where the loss function is the zero-one loss.

Proof. Let D be any distribution on Z, and let DX , DY be the marginal distributions
over X and Y respectively. Also, given any x ∈ X , we will use the notation DY|x for
the induced distribution on Y given a value of x. Finally, let X,Y be random variables
denoting the values of x and y.

We want to show that

P
(X,Y )∼D

[fD(X) 6= Y ] ≤ P
(X,Y )∼D

[g(X) 6= Y ]

Note that this is equivalent to showing that

P
(X,Y )∼D

[fD(X) = Y ] ≥ P
(X,Y )∼D

[g(X) = Y ]

Intuitively, this just means that the success probability of the Bayes classifier is the
maximum possible success probability. We now have the following.

P
(X,Y )∼D

[g(X) = Y ] =
∑
x∈X

P
(X,Y )∼D

[g(X) = Y ∧X = x]

=
∑
x∈X

P
X∼DX

[X = x] P
Y∼DY|x

[g(X) = Y | X = x]

≤
∑
x∈X

P
X∼DX

[X = x] P
Y∼DY|x

[fD(X) = Y | X = x]

=
∑
x∈X

P
(X,Y )∼D

[fD(X) = Y ∧X = x]

= P
(X,Y )∼D

[fD(X) = Y ]

where in one of the steps above, we used Lemma 2.1. This proves the claim. ■

Definition 2.2. Let H be an hypothesis class. H is said to be agnostic PAC learnable
if there is some function mH : (0, 1)2 → N and a learning algorithm A with the
following property: for every ϵ, δ ∈ (0, 1) and for every distribution D over X × Y ,
when running the algorithm A on m ≥ mH(ϵ, δ) i.i.d samples generated by D, the
algorithm returns a hypothesis h such that

P
S∼Dm

[
LD(hS) ≤ min

h′∈H
LD(h

′) + ϵ

]
≥ 1− δ
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2.3. Generalized Loss Functions. Let H be given, and suppose Z = X ×Y is some
domain. Let l : H× Z → R+. Such a function is called a loss function.

The risk function for a hypothesis h and a given loss function l : H × Z → R+ is
defined as follows.

LD(h) := Ez=(x,y)∼D [l(h, z)]

For a training data set S of m data points sampled from D, the empirical risk with
respect to the loss function l is defined as follows.

LS(h) :=
1

m

m∑
i=1

l(h, zi)

2.4. Agnostic PAC Learnability with general loss functions. We can now easily
define a general notion of agnostic PAC learnability as follows.
Definition 2.3. Let H be a hypothesis class. It is said to be agnostic PAC learnable
with respect to a set Z and a loss funciton l : H× Z → R+, if there is some function
mH : (0, 1)2 → N and a learning algorithm A with the following property: for every
ϵ, δ ∈ (0, 1) and for every distribution D on Z, if we run A on m ≥ mH(ϵ, δ) i.i.d
samples, we have

P
S∼Dm

[
LD(h) ≤ min

h′∈H
LD(h

′) + ϵ

]
≥ 1− δ

Above, LD(h) is the risk function with respect to the loss l.

3. Learning Via Uniform Convergence

Definition 3.1. As usual, let Z = X × Y be our domain, H be the hypothesis class,
l : Z × H → R+ be a loss function and D a distribution on Z. Let S ∼ Dm be a
training set sampled as i.i.d data points. S is said to be ϵ-representative with respect
to Z,H, l and D if for all h ∈ H, we have

|LS(h)− LD(h)| ≤ ϵ

As usual, Lh(S) is the empirical risk w.r.t the loss function l, and LD(h) is the gener-
alisation error of h w.r.t the loss function.
Lemma 3.1. Let S be a training set which is ϵ/2 representative w.r.t Z,H, l and D.
Then the output of the ERMH algorithm satisfies the following.

LD(hS) ≤ min
h∈H

LD(h) + ϵ

Here, hS is the output of ERMH on the training set S (i.e the output of empirical risk
minimization).
Proof. The proof is actually simple. First, because S is ϵ/2-representative, we know
that

LD(hS) ≤ LS(hS) + ϵ/2

Next, because we are using the ERMH algorithm, for all h ∈ H it is true that
LS(hS) + ϵ/2 ≤ LS(h) + ϵ/2

Again, since S is ϵ/2-representative, we know that for all h ∈ H,
LS(h) + ϵ/2 ≤ LD(h) + ϵ/2 + ϵ/2 = LD(h) + ϵ

Combining the three inequalities, we get that
LD(hS) ≤ LD(h) + ϵ
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Since this is true for all h ∈ H, the claim follows. ■
Remark 3.1.1. This lemma is useful because it shows that to prove that ERM is
agnostic PAC learnable, it suffices to show that with probability atleast 1 − δ over
training samples, the training sample is ϵ/2 representative. We formalize this notion
below.
Definition 3.2. We say that a hypothesis class H has the uniform convergence prop-
erty with respect to a domain Z and a loss function l if there exists some mUC

H :
(0, 1)2 → N such that the following holds: for every ϵ, δ ∈ (0, 1) and for every distri-
bution D on Z, if S is a sample of m ≥ mUC

H (ϵ, δ) examples drawn i.i.d according to
D, then with probability atleast 1− δ over S, S is ϵ-representative.

Let us now prove formally the fact we mentioned in Remark 3.1.
Proposition 3.2. If a class H has the uniform convergence property with function
mUC

H with respect to domain Z and loss function l, then H is agnostically PAC learnable
with sample complexity mH(ϵ, δ) ≤ mUC

H (ϵ/2, δ). Furthermore, in that case, the ERMH
algorithm is a successful PAC learner.
Proof. This fact is nothing but using definitions and facts about ϵ-representative sets.
So suppose the class H has the uniform convergence property with respect to Z and l.

Choose mH(ϵ, δ) = mH

( ϵ
2
, δ
)

. We will show that with this mH, H is agnostically
PAC learnable with ERMH algorithm. So, let ϵ, δ ∈ (0, 1) be any numbers.

Let D be any distribution on Z. Suppose we run ERMH on m = mH(ϵ, δ) =

mUC
H

( ϵ
2
, δ
)

samples. Now,

P
S∼Dm

[S is ϵ/2-representative] ≥ 1− δ

which is true by the definition of uniform convergence. Now, by Lemma 3.1, it follows
that

P
S∼Dm

[
LD(hS) ≤ min

h∈H
LD(h) + ϵ

]
≥ 1− δ

which is clearly true because ϵ/2 representative sets satisfy the given generalisation
error inequality. This proves the claim. ■
3.1. Finite Classes are Agnostically PAC learnable. This will be our first big
theorem. We will show that finite hypothesis classes our agnostically PAC learnable.
To do this, first we will prove an important inequality called Hoeffding’s Inequality.
Lemma 3.3 (Hoeffding’s Lemma). Let X be a random variable that takes values
in the interval [a, b] and suppose E [X] = 0. Then, for every λ > 0, we have

E
[
eλX
]
≤ e

λ2(b−a)2

8

Proof. See Lemma B.7 in the book. ■
Lemma 3.4 (Hoeffding’s Inequality). Let θ1, ..., θm be a sequence of i.i.d random
variables and suppose for all i, E [θi] = µ and P [a ≤ θi ≤ b] = 1. Then, for any ϵ > 0,

P
[∣∣∣∣∣ 1m

m∑
i=1

θi − µ

∣∣∣∣∣ > ϵ

]
≤ 2exp(−2mϵ2/(b− a)2)

Proof. See Lemma B.6 in the book. ■
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We can now prove the main theorem of this section.

Theorem 3.5. Let H be a finite hypothesis class, i.e |H| < ∞. Let Z be a domain,
and let l : H×Z → [0, 1] be a loss function (i.e we are assuming that our loss function
is bounded). Then, H has the uniform convergence property with sample complexity

mUC
H (ϵ, δ) ≤

⌈ log(2|H|/δ)
2ϵ2

⌉
Furthermore, H is agnostically PAC learnable using the ERM algorithm with sample
complexity

mH(ϵ, δ) ≤ mUC
H (ϵ/2, δ)

Proof. Via Proposition 3.2, the second statement will follow if we show that H has
the uniform convergence property with respect to Z and l. So, let ϵ, δ be fixed. We
need to compute the number m = mUC

H (ϵ, δ) which works for all distributions D on Z,
i.e

P
S∼Dm

[S is ϵ-representative] ≥ 1− δ

This is equivalent to finding an m such that
P

S∼Dm
[S is not ϵ-representative] < δ

which in turn is the same as showing
P

S∼Dm
[∃h ∈ H s.t |LS(h)− LD(h)| > ϵ] < δ

Now, consider the probability mass
Q = Dm{S : |S| = m and ∃h ∈ H s.t |LS(h)− LD(h)| > ϵ}

We need to find m such that the above probability mass (with respect to any distri-
bution D) is less than δ. Note that the above probability mass is the same as the
following.

Q = Dm
⋃
h∈H

{S : |S| = m and |LS(h)− LD(h)| > ϵ}

By a trivial union bound, we see that

Q ≤
∑
h∈H

Dm {S : |S| = m and |LS(h)− LD(h)| > ϵ}

Let us now bound the RHS of the above inequality. Let some hypothesis h ∈ H be
fixed. Recall that

LD(h) = Ez∼D [l(h, z)]

and that

LS(h) =
1

m

m∑
i=1

l(h, zi)

Since zi are picked randomly, LS(h) is a random variable, and each l(h, zi) is a random
variable too. Since each zi is picked i.i.d from D,

E [l(h, zi)] = LD(h)

and by the linearity of expectation,
E [LS(h)] = LD(h)

So, the difference |LS(h) − LD(h)| is the deviation of a random variable from it’s
mean. Now here is where we will invoke Hoeffding’s Inequality 3.4. Here our
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random variables will be l(h, zi), and the mean is LD(h). Also, note that l(h, zi) lies
in [0, 1] (here is our boundedness assumption). So,

P
S∼Dm

[|LS(h)− LD(h)| > ϵ] = P
[∣∣∣∣∣ 1m

m∑
i=1

l(h, zi)− LD(h)

∣∣∣∣∣ > ϵ

]
≤ 2e−2mϵ2

Throughout h was fixed. Finally, we see that
Q ≤ |H|2e−2mϵ2

Now, we want Q to be less than δ. So, we’ll make the RHS above to be less than δ,
which is equivalent to making

m ≥ log 2|H|/δ
2ϵ2

This proves our claim. ■

4. Bias-Complexity Trade-off

4.1. No Free Lunch Theorem. This section resolves the equation of a universal
learner, i.e a learning algorithm which, no matter what problem it faces, always pro-
duces a good hypothesis (in the sense of PAC learnability). It turns out that such a
universal learner does not exist.
Theorem 4.1 (No Free Lunch Theorem). Let A be any learning algorithm for the
task of binary classification with respect to the 0− 1 loss over a domain X . Let m be
a number smaller than X

2
, representing a training size. Then, there is a distribution

D on X × {0, 1} such that the following hold.
(1) There exists a function f : X → {0, 1} with LD(f) = 0
(2) With probability atleast 1/7 over the choice of S ∼ Dm, we have that LD(A(S)) ≥

1/8.
Proof. See Theorem 5.1 of the book. Here we’ll just fill in all the missing details.

Consider inequality (1.4), i.e

ES∼Dm [LD(A
′(S))] ≥ 1

4
Now, suppose

P
S∼Dm

[
LD(A

′(S)) ≥ 1

8

]
= α

Clearly then, we have the following.
1

4
≤ ES∼Dm [LD(A

′(S))] ≤ α · 1 + (1− α) · 1
8
=

7

8
α +

1

8
and from here we clearly see that

α ≥ 1

7
and hence showing that inequality (1.4) in the proof holds is indeed enough, as claimed
by the author. ■
Remark 4.1.1. Clearly, the above theorem implies given an infinite domain set X ,
the hypothesis class of all functions f : X → {0, 1} is not agnostically PAC learnable;
for the sake of contradiction, suppose it was, and let the learning algorithm be A.
Let δ = 1

7
and let ϵ = 1

8
. Suppose the sample complexity for this choice of ϵ, δ is m.

Clearly, m < |X |/2. The above theorem implies the existence of some distribution D
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over X × {0, 1} such that there is some classifier f with zero generalisation error, but
that over the choice of S, with atleast δ probability, we get an error of atleast 1/8.
This clearly contradicts the definition of PAC learnability. So, it follows that this class
is not agnostically PAC learnable, and hence some kind of inductive bias is required.

4.2. Approximation Error and Estimation Error. Suppose we have a sample S,
and our algorithm returns the hypothesis hS. We can write the generalisation error
LD(hS) as a sum of two terms.

LD(hS) = ϵapprox + ϵest

where
ϵapprox := min

h∈H
LD(h)

Note that ϵapprox is dictaded purely by the class H, while the estimation error ϵest is
dictated by the sample complexity of our class and how difficult the class if to learn.
So, in any algorithm, there is some sort of bias-complexity trade off going on.

5. VC Dimension

5.1. A learnable infinite class. As we have seen, The No Free Lunch Theorem
really says that the class of all hypothesis is not learnable, if the domain X is infinite.
However, this does not imply that all infinite hypothesis classes are not learnable.
We will see one example of an infinite learnable class here, and another class, namely
that of axis-parallel rectangles in Rd, is presented in HW-1. This class is infinite and
learnable.

Definition 5.1. The class of threshold functions over the real line R is defined as
follows.

H = {ha : a ∈ R}
where the function ha is defined as

ha(x) = 1[x<a]

where 1 is the indicator function. Clearly, this class is of infinite size.

It turns out that this class is PAC learnable.

Proposition 5.1. The class of all threshold functions over R is PAC learnable with
sample complexity

mH(ϵ, δ) ≤ dlog(2/δ)/ϵe
Proof. See Lemma 6.1 in the book. ■

5.2. VC Dimension. In this section, we will introduce the correct characteristaion
of PAC learnability, which is called the VC dimension.

Definition 5.2. Let H be a class of functions from X to {0, 1}, and let C ⊆ X . The
restriction of H to C is the set of all functions from C to {0, 1} which can be derived
from H. This is denoted by H|C .

Definition 5.3. LetH and C be as above. IfH|C is the set of all functions C → {0, 1},
then H is said to shatter C.

The above definition clearly implies that following statement as a corollary of the
No Free Lunch Theorem.
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Corollary 5.1.1. Let H be a class of functions from X to {0, 1}. Suppose there is
some set C ⊆ X of size 2m such that H shatters C. Then for any algorithm A, there
exists a distribution D over X ×{0, 1} and a predictor h ∈ H such that LD(h) = 0 but
with probability atleast 1/7 over the choice of S ∼ Dm, we have that LD(A(S)) ≥ 1/8.
Proof. In the proof of the No Free Lunch Theorem, we only used the fact about H
shattering C. ■
Definition 5.4. The VC-dimension of a hypothesis class H is the maximal size of a
set C ⊆ X that can be shattered by H.

Clearly, the definition implies the following important fact.
Theorem 5.2. Let H be a class of infinite VC-dimension. Then, H is not PAC
learnable.
5.3. VC Dimension of Half Spaces. Consider d-dimensional half spaces, i.e half
spaces in Rd. So, we are considering the following hypothesis class.

H =
{
hw,w0 | w ∈ Rd, w0 ∈ R

}
where

hw,w0(x) = sign(wTx+ w0)

We will show that for this class,
VCdim(H) = d+ 1

First, let us prove a geometrical fact.

Theorem 5.3 (Radon’s Theorem). Any collection of d + 2 points in Rd can be
partitioned into two non-empty subsets A,B such that the intersection of the convex
hulls of A,B is non-empty.
Proof. Let x1, ...,xd+2 be the points. Now, to every point, append a new coordinate
with value 1. Let the resultant points in Rd+1 be p1, ...,pd+2. Then, consider the
following matrix.

A =


... ... · · · ...
x1 x2 · · · xd+2
... ... · · · ...
1 1 · · · 1


So, the columns of A are the points p1, ...,pd+2. Clearly, the rank of A is atmost d+1.
So, it follows that the kernel of A is non-empty. So, there is some non-zero point
(y1, ..., yd+2) such that 

... ... · · · ...
x1 x2 · · · xd+2
... ... · · · ...
1 1 · · · 1




y1
y2
...

yd+2

 = 0

Clearly, this implies that
d+2∑
i=1

yi = 0

Since the point (y1, ..., yd+2) is non-zero, this implies that there is atleast one negative
number among the yi’s. Without loss of generality, suppose y1, ..., yt are non-negative,
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and that yt+1, ..., yd+2 are negative. In that case, the above matrix equation implies
the following.

y1x1 + · · ·+ ytxt = yt+1xt+1 + · · ·+ yd+2xd+2

Also, observe that
t∑

i=1

yi =
d+2∑

i=t+1

−(yi)

So, it follows that
y1x1 + · · ·+ ytxt∑t

i=1 yt
=

yt+1xt+1 + · · ·+ yd+2xd+2∑d+2
y=t+1−(yt)

Clearly, the LHS is a point in the convex hull of x1, , ...,xt and the point on the RHS
is in the convex hull of xt+1, ...,xd+2. This proves the theorem. ■
Corollary 5.3.1. The VC dimension of the hypothesis class defined by half spaces in
Rd is ≤ d+ 1.

Proof. By the above theorem, we know that if we have d + 2 points in Rd, then they
can be partitioned into non-empty sets A,B such that their convex hulls intersect at
some point. Using this fact, let us show that half spaces in Rd cannot shatter d + 2
points. If they could, there would be a separator which could separate points in A
from points in B. But this is a contradiction, because then we can consider a point
in the intersection of the convex hulls; it cannot have both a positive and a negative
label. ■
Corollary 5.3.2. The VC dimension of the hypothesis class defined by half spaces in
Rd is d+ 1.

Proof. By the previous corollary, it is enough to show that half spaces in Rd can
shatter d points. Consider the d-dimensional simplex ∆d, and consider the vertices
of this simplex. The vertices are simply ei (the basis vectors of Rd) for 1 ≤ i ≤ d.
In addition to these points, consider the origin as well. So, we have a set of d + 1
points, and we will show that half-spaces completely shatter these points. To be
completed. ■
5.4. The Fundamental Theorem of Statistical Learning. In this section, we will
state the Fundamental Theorem of Statistical Learning; for a proof, refer to the main
book (Theorem 6.7); a very detailed proof is given there.

Theorem 5.4 (Fundamental Theorem of Statistical Learning). Let H be a class
of functions from X to {0, 1}, and suppose the loss is the 0−1 loss. Then, the following
are equivalent.

(1) H has the uniform convergence property.
(2) Any ERM is a successful PAC learner for H.
(3) H is agnostically PAC learnable.
(4) H is PAC learnable.
(5) H has finite VC-dimension.

Remark 5.4.1. There is a constructive version of this theorem which even gives
bounds on the sample complexity of H. Refer to Theorem 6.8 of the book.

The proof of this theorem is done in two steps. Before mentioning what they are, we
will give a new definition.
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Definition 5.5. Let H be a hypothesis class. Then the growth function of H, denoted
by τH : N→ N, is defined as follows.

τH(m) = max
C⊆X ,|C|=m

|H|C |

So, τH(m) is the maximum number of functions that can be obtained by restricting H
to a subset of size m.

The proof of Theorem 5.4 is done in the following two steps.
(1) First, if VCdim(H) = d, then it is shown that even if H is infinite, the effective

step size τH(m) grows polynomially with m instead of exponentially. In simple
words, for large |C|,

|H|C | ∼ O(|C|d)
This fact is also called Sauer’s Lemma.

(2) The second step shows that hypothesis classes with small effective step size
have the uniform convergence property.

We will now state the first step above without proof.

Theorem 5.5 (Sauer’s Lemma). Let H be a hypothesis class with VCdim(H) ≤
d <∞. Then for all m, τH(m) ≤

∑d
i=0

(
m
i

)
. In particular, if m > d+ 1, then

τH(m) ≤ (em/d)d

Proof. Look at Lemma 6.10 in the book for a proof. ■

The second step is proved by proving the following theorem.

Theorem 5.6. Let H be a class and let τH be it’s growth function. Then, for every
D and every δ ∈ (0, 1), with probability of atleast 1− δ over the choice of S ∼ Dm we
have the following.

|LD(h)− LS(h)| ≤
4 +

√
log(τH(2m))

δ
√
2m

Proof. See Theorem 6.11 for a detailed proof of this. ■

6. Algorithms: Linear Classifiers

6.1. A simple Disjunction Learner. Suppose we are writing a machine learning
algorithm for email spam filtering. Here, we will explore a simple algorithm for the
same.

First, we maintain a set of words found over all the emails in the training set; this
is also known as the bag of words approach. Suppose we collect d words. Then,
each email in the training set can be represented by a d-dimensional vector: the ith
coordinate of the vector is 0 if the corresponding word is not present in the email, and
it is 1 otherwise. So,

X ⊆ Rd

Next, let
H := set of all disjunctions of d variables

In simple words, H is the set of all possible subsets of the collection of words we have
obtained. Clearly,

|H| = 2d
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and hence this hypothesis class is finite. Also, we will assume that each email in the
training set comes with a label in Y = {0, 1}. A positive label means that the email
is not spam, and a zero label means that the email is spam.

The distribution D used to generate the training set will be the uniform distribution
on the emails.

Next, we set up our inductive bias: some disjunction h∗ ∈ H is a perfect classifier.
Note that this is the realizability assumption that we looked at earlier.

Finally, let us describe our learning algorithm.
• Let

VS := {vi : vi = 0 in all negative examples}
Informally, Vi is the collection of all those words which don’t appear in any of
the negative training examples.
• Let

h = OR of all features in VS

Intuitively, we are defining h to be the classifier which considers all words in VS,
and on an email returns 1 if any word is present in the email, and 0 otherwise.

Proposition 6.1. If h is defined as above, then LS(h) = 0.

Proof. Suppose x ∈ S is a negative training example. By definition, this means that
all words in VS are absent in x. So, h(x) = 0, since the OR of all features in VS will
be zero.

Next, suppose x ∈ S is a positive training example. Proving h(x) = 1 will need us to
invoke the realizability assumption that we had above; we assumed that there is some
h∗ ∈ H such that h∗(x) = 1 and h∗(y) = 0 for all negative training examples y ∈ X .
This means that there is some word v ∈ VS contained in x, and hence h(x) = 1. ■
Remark 6.1.1. Essentially, this proposition is saying that under the realizability
assumption, this simple algorithm minimizes the empirical risk over any training set.
Then, by Theorem 1.1, if we choose m ≥ log(2d/δ)

ϵ
samples, we will approximately get

the best classifier.

6.2. Halfspaces, Hyperplanes. Next, we shall see how linear classification algo-
rithms are used to classify data. We will assume the standard knowledge about hy-
perplanes in this section.

Let X ⊆ Rd+1 be our domain set. Note the dimension d + 1. We are doing this to
simplify things: we will assume that each feature vector is appended with a 1. Doing
this will let us focus only on hyperplanes of the form

hw(x) = wTx

i.e there is no offset term in the equation of the hyperplane.

6.3. Perceptron Algorithm. In this section, we will study an algorithm that com-
putes a linear classifier given the realizability assumption. Let us make all these
notions formal. As usual, we will only consider separators with zero offset/bias term
(by appending 1’s at the end of our feature vectors, if necessary).

Definition 6.1. Let S ⊆ Rd be a training set. Then S is said to be linearly separable
if there is some w ∈ Rd such that for all (xi, yi) ∈ S,

yi(w
Txi) > 0



16 SIDDHANT CHAUDHARY

Intuitively, this means that there is some hyperplane that separates these points per-
fectly.

Remark 6.1.2. This is the realizability assumption for the linear classification prob-
lem.

Proposition 6.2. Let S ⊆ Rn be a linearly separable set. Then, there is some vector
w∗ ∈ Rn such that for all (xi, yi) ∈ S,

yi((w
∗)Txi) ≥ 1

Proof. Define γ as follows.
γ := min

i
yi(w

Txi)

and put
w∗ =

w

λ
Clearly we can do this because λ > 0. It is now straightforward to check that w∗

satisfies the given inequality. ■

Remark 6.2.1. Let us now give some motivation for why we are proving this propo-
sition. Suppose we have a hyperplane with equation

wTx+ b = 0

Now, we define the following two hyperplanes, called the margin boundaries.

wTx+ b = ±1

In the Support Vector Machine algorithm (which we will visit soon), the problem is to
try to find a hyperplane that maximises the margin, which is defined to be the smallest
distance between a point and the hyperplane (the number γ in the above proof). So,
in that case, points which are outside of the margin boundaries are considered to be
good and incur zero loss, while points which are within the margin boundaries are bad
and incur loss which is linear to how much they are within boundaries.

Now let us consider the so called perceptron algorithm.

Algorithm 1 Perceptron Algorithm
1: function perceptron(S) ▷ S is the training set
2: w1 = (0, 0, ..., 0)
3: for t = 1, 2, ... do
4: if ∃i s.t yi((w

t)Txi) ≤ 0 then
5: wt+1 = wt + yixi

6: else
7: return wt

8: end if
9: end for

10: end function

So, the perceptron initialises w to be the zero vector, and if at any time step there is
an error on some data point, it updates w accordingly. So, the perceptron algorithm
only terminates if it has found a perfect classifier.
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Theorem 6.3. Let S be a linearly separable set. Let R = max
i
||xi|| and let

B = min
{
||w|| : ∀i ∈ [m], yi(w

Txi) ≥ 1
}

and we know that B exists because S is linearly separable. Then the perceptron algo-
rithm stops after atmost R2B2 updates and outputs a perfect classifier.
Remark 6.3.1. Again, as mentioned quite a lot of times, this is the realizability
assumption for the linear classification problem.

Proof. Let w∗ be the vector which achieves the minimal B, i.e
B = ||w∗||

Over the sequence of updates, we will keep track of two quantities: wTw∗ and ||w||2.
Here w refers to the current normal vector.

Suppose the algorithm makes M updates. We claim the following two facts.
(1) Each update increases ||w||2 by atmost R2.
(2) Each update increases wTw∗ by atleast 1.

Claim (1) is very easy to prove. Suppose the update was
w′ ← w + yixi

for some i. Then, we have the following.
||w′||2 = (w + yixi)

T (w + yixi)

= ||w||2 + 2yiw
Txi + ||xi||2

Note that the second term above is negative since w didn’t classify the data point
(xi, yi) correctly. So, the last term is ≤ ||w||2 +R2, which proves the claim.

Now, we move to claim (2). Again, suppose the update was
w′ ← w + yixi

Then, we have the following.
(w′)Tw∗ = (w + yixi)

Tw∗

= wTw∗ + yix
T
i w

∗

≥ wTw∗ + 1

where in the last step we used the realizability assumption.
Now, we will use the Cauchy-Schwarz Inequality. Suppose w is the vector we obtain

after M iterations. Then we have the following.
wTw∗ ≤ ||w|| ||w∗||

This implies that
|wTw∗|

B
≤ ||w||

Now, if we make M iterations, |wTw∗| can be atmost M (because we initially started
with w = 0), and ||w|| can be atmost R

√
M (because each step increases the squared-

norm by atmost R2). So, the above inequality implies that
M

B
≤ R
√
M

which gives us the bound
M ≤ (RB)2
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This proves the theorem. ■
Remark 6.3.2. An equivalent of stating this theorem is the following: the number of
updates M is atmost R2γ2, where γ is the margin of separation that the best predictor
achieves.

6.4. Linear Regression. So far, we’ve been dealing with classification problems. For
a moment, we’ll discuss regression problems, i.e problems in which we want to learn
some general function (wherein we are provided with continuous values at some points).

Definition 6.2. The class H of linear regression predictors is defined as follows, where
the domain set X ⊆ Rd.

H = Ld :=
{
x 7→ wTx+ b,w ∈ Rd, b ∈ R

}
The typical loss function used in linear regression is the squared loss.

l(h, (x, y)) = (h(x)− y)2

The empirical risk function associated to this loss function is the mean squared error
loss.

LS(h) =
1

m

m∑
i=1

(h(xi)− yi)
2

Now, suppose h ∈ Ld, i.e h is a linear regression predictor. Then, the empirical risk
has the following formula.

LS(h) =
1

m

m∑
i=1

(wTxi − yi)
2

Above we are assuming that there is no bias term in the predictor, i.e b = 0 (we can
do this by appending 1’s to our feature vectors). Clearly, the minima of the above
function is attained at the point where the gradient (w.r.t w) is zero. The gradient of
LS(h) is clearly the following.

∇wLS(h) =
1

m

m∑
i=1

2(wTxi − yi)xi

So, equating the gradient to 0, we get the following.
m∑
i=1

2(wTxi − yi)xi = 0

The above equation implies the following.
m∑
i=1

(wTxi)xi =
m∑
i=1

yixi

Convince yourself that the above equation can be written as follows.(
m∑
i=1

xix
T
i

)
w =

m∑
i=1

yixi

Now, let A =
(∑m

i=1 xix
T
i

)
and let B =

∑m
i=1 yixi. So, A is a d× d matrix and B is a

d-dimensional vector, and the above equation becomes
Aw = B
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Now clearly, if the matrix A is invertible, this gives us the required value of w.
w = A−1B

i.e A−1B is the vector for which the empirical risk as defined above is minimized.
Now, consider the case when A is not invertible. Observe that A is symmetric (being

a sum of symmetric matrices). So, A is diagonalizable; so we can write
A = V DV T

where D is some diagonal matrix and V is an orthonormal matrix, i.e V TV = Id.
Define D+ to be the diagonal matrix such that D+

ii = 0 if Dii = 0 and D+
ii = D−1

ii

otherwise. Now, define
A+ = V D+V T

and
ŵ = A+B

We claim that ŵ is a solution to the equation Aw = B. Let us prove this now. We
have the following.

Aŵ = A(A+B)

= A(V D+V TB)

= V DV T (V D+V T )B

= V DD+V TB

Now, observe that the matrix DD+ is a diagonal matrix such that (DD+)ii = 0 if
Dii = 0 and (DD+)11 = 1 otherwise. Now, convince yourself that

V (DD+)V T =
∑

Dkk ̸=0

vkv
T
k

where v1, ..., v)d are the columns of V . So, we see that

Aŵ =
∑

Dkk ̸=0

vkv
T
k B

So, it follows that Aŵ is the projection of B onto those vectors vi for which Dii 6= 0.
Observe that B is in the span of xi. Since the span of xi is precisely those vectors vi

for which Dii 6= 0, it follows that ∑
Dkk ̸=0

vkv
T
k B = B

and hence we’re done.
We can infact prove another strong property of the ŵ that we obtained above,

namely that among all solutions to Aw = B, ŵ has the least norm.
Theorem 6.4. Among all solutions to Aw = B, where A,B are defined as above, ŵ
has the least norm.
Proof. Assume that A is not invertible; otherwise there is anyways a unique solution.

Since ŵ is solution to the equation, any solution w of the equation is of the form
w = ŵ + z

where z ∈ Ker(A).
Next, we claim that for any z ∈ Ker(A), we have that

ŵTz = 0
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i.e ŵ is orthogonal to the kernel of A. We have the following.
zT ŵ = zT (A+B)

= zT (V D+V TB)

= (V D+V Tz)TB

= (A+z)TB

Next, we claim that for such z, it is true that
A+z = 0

This is true because
A+z = V D+V Tz

= V D+z′

where z′ = V Tz. Now, if A+z 6= 0, then it would be the case that D+z′ 6= 0, which
would then imply that Dz′ 6= 0 (both D, D+ are diagonal matrices with related
entries). But then, note that

Az = V DV Tz = V Dz′ 6= 0

which is a contradiction to our assumption (note that we are using here the fact that
V is invertible). So, we have proven the claim, namely that ŵTz = zT ŵ = 0 for all z
in the kernel of A.

We now prove the original claim, namely that ||ŵ|| is the least among all possible
solutions of Aw = B. This is clear: if w is any solution, then

w = ŵ + z

for some z ∈ KerA, and by what we have shown, we see that
||w||2 = ||ŵ||2 + ||z||2 ≥ ||ŵ||2

and this proves the claim. ■

7. Boosting

7.1. Boosting Weak Learners. The PAC learning theorems, and infact the Fun-
damental Theorem of Statistical Learning that we have seen, guarantee that certain
hypothesis classes are PAC learnable with an ERM algorithm. However, this might be
not a viable option practically, as ERM algorithms could be NP-hard. An example
of this is the agnostic PAC learning of Axis Aligned Rectangles.

Definition 7.1. A learning algorithm A is said to be a γ-weak learner for a hypothesis
class H if for all δ ∈ (0, 1) there exists an mH(δ) ∈ N such that for every distribution
D over domain X and every labelling function f : X → {0, 1} with the realizability
assumption, then for a sample set S of size m ≥ mH(δ) picked up i.i.d from D, the
algorithm A outputs h (which need not be in H) such that with probability ≥ 1 − δ
over the choice of S, h satisfies

L(D,f)(h) ≤
1

2
− γ

A strong learner for H is an algorithm that works for all ϵ > 0, and not just 1/2− γ.

Remark 7.0.1. Note that the output h produced by A need not be in H.
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Example 7.1 (Weak learning three piece classifiers using decision stumps).
A three piece classifier is a classifier of the following form.

hθ1,θ2,b(x) =

{
−b , if θ1 ≤ x ≤ θ2

b , otherwise

A decision stump is a classifier of the following form.

hθ,b(x) =

{
−b , if x < θ

b , otherwise

Let H be the class of three piece classifiers, and let B be the class of decision stumps.
We claim that doing ERM over B is a γ-weak learner for H with γ = 1/12.

To prove this claim, let D be a distribution over R satisfying the realizability as-
sumption. We show that there exists a decision stump h such that L(D,f)(h) ≤ 1

3
.

Because of the realizability assumption on H, there is a decision stump hθ1,θ2,b which
has zero generalization error. Now, consider the partition of R into the following three
intervals.

R = (−∞, θ1] ∪ [θ1 ∪ θ2] ∪ [θ2,∞)

Now, there must be atleast one interval I among the above three such that D(I) ≤ 1
3

(D is a probability distribution afterall). We will handle three cases.
(1) For the first case, suppose I = (−∞, θ1]. Define the decision stump h ∈ B to

be h = hθ2,b. So, the h only gives an error on the interval I, and hence it’s
generalisation error is ≤ 1

3
.

(2) The case I = [θ2,∞) is symmetric to the first case.
(3) In the third case, suppose I = [θt, θ2]. Consider the classifier h ∈ B defined by

h = h−∞,b, i.e h is the classifier which assigns b to all the points. Clearly, h
only gives an error in the interval I, and hence it’s generalisation error is ≤ 1

3
.

S, the claim follows.
Now, we know that VCdim(B) = 2 (B is the set of linear separators in R). So

by the constructive version of the Statistical Learning theorem, we know that ERMB

(given sufficient samples) returns a hypothesis with generalisation error ≤ 1
3
+ϵ, where

ϵ is the accuracy parameter. If we put ϵ = 1/12, then we see that the generalisation
error of the hypotehesis returned by ERMB will be ≤ 1

3
+ 1

12
= 1

2
− 1

12
, i.e ERMB is a

1
12

= γ-weak learner for H.

Theorem 7.1. If H has infinite VC dimension, then there is no γ-weak learner for
H for any γ ∈ (0, 1).

Proof. The quantitative version of the of the Fundamental Theorem of Statistical
Learning states that: if a class H has VC dimension d, then the sample complexity
of this class is mH(ϵ, δ) ≥ c1 ·

d+ log(1/δ)
ϵ

, where c1 is some constant. In our case,
ϵ = 1

2
− γ. So if d =∞, so is mH(ϵ, δ) and hence there is no γ-weak learner. ■

Remark 7.1.1. This theorem essentially says that we still need finite VC dimension
for weak learning.

7.1.1. ERM for decision stumps. Watch from 20:06 mark.
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7.2. AdaBoost and Linear Combinations of Base Hypothesis. I didn’t get
enough time to typeset my notes for these topics, but much of those notes intersects
with what is given in the book.

8. Non-Uniform Learning

8.1. Non-Uniform Learnability. Let us begin with a simple definition.

Definition 8.1. A hypothesis h’ is said to be (ϵ, δ)-competitive with a hypothesis h if
with probability ≥ 1− δ, it is true that

LD(h
′) ≤ LD(h) + ϵ

Definition 8.2. A hypothesis class H is said to be nonuniformly learnable if there
exists a learnable algorithm A and a sample size function mH(ϵ, δ, h) → N (where
(ϵ, δ) ∈ (0, 1)2 and h ∈ H) such that for every ϵ, δ ∈ (0, 1) and for every h ∈ H, if
m ≥ mH(ϵ, δ, h) then for every distribution D, with probability ≥ 1−δ over the choice
of S ∼ Dm, it holds that

LD(A(S)) ≤ LD(h) + ϵ

i.e the output of the algorithm A on a sample set S of size atleast m is ϵ-competitive
with h.

Remark 8.0.1. This is very much like the definition of PAC learning; except, here
we may have separate sample complexities for different hypothesis functions h ∈ H.
In PAC learning, the sample complexity is independent of the hypothesis h. So non-
uniform learning is really a generalisation of PAC learning. We will next show that
this is a strict generalisation.

Lemma 8.1. Non-uniform learnability strictly generalises agnostic PAC learnability.

Proof. It is clear that if H is PAC learnable, then it is non-uniform learnable.
Now, we will consider a class which is non-uniform learnable, but it is not PAC

learnable. Suppose X = R, and for all n ∈ N, define

Hn := {h(u) = sign(p(u)) | p ∈ R[x]}

So in simple words, Hn is the class of all degree n polynomial classifiers. It can be
shown that

VCdim(Hn) = n+ 1

So, if we define

H =
⋃
n∈N
Hn

then VCdim(H) = ∞. But, if we have some h ∈ H, then h ∈ Hn for some n, and
hence mH(ϵ, δ, h) can be set to

mH(ϵ, δ, h) = mHn(ϵ, δ)

This completes the proof. ■
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8.2. Characterizing Non-Uniform Learnability and Structural Risk Mini-
mization. We will now give a general theorem that will characterize non-uniform
learnability. Before proving the characterization theorem, we will prove some facts.
First, we introduce the notion of structural risk minimization.

Suppose we have a hypothesis class H, and within the hypothesis class we have
subgroups of hypothesis. Assume that H can be written as a countable union

H =
⋃
n∈N
Hn

We assign weights wn to the classesHn; the weight function is a function w : N→ [0, 1]
which assigns weights to the subclasses. A higher weight means we are giving more
importance to a particular subclass. We also assume that

∞∑
n=1

w(n) ≤ 1

The above equation just means we have normalised our weights.

Definition 8.3. With the setup as above, define the function ϵn : (0, 1)2 → N as
follows.

ϵn(m, δ) := min
{
ϵ | mUC

Hn
(ϵ, δ) ≤ m

}
In simple words, given some sample size m, we are interested the minimum possible
gap between the true risk and the empirical risk if we’re allowed m sample points.

Theorem 8.2. Let m ∈ N, and let the weight function w be as above. Let H, Hn be
as above. Assume that each Hn satisfies the uniform convergence property with sample
complexity mUC

Hn
. Let ϵn be as defined above. Then, for every δ ∈ (0, 1) and distribution

D, with probability atleast 1− δ over the choice of S ∼ Dm, it is true (simultaneously)
for all n and all h ∈ Hn that

|LD(h)− LS(h)| ≤ ϵn(m,w(n) · δ)

Proof. Fix n ∈ N. By the definition of ϵn, we see that for all h ∈ Hn,
P

S∼Dm
[|LD(h)− LS(h)| ≤ ϵn(m,w(n) · δ)] ≥ 1− w(n) · δ

Taking a union bound over all n ∈ N, we see that for all n ∈ N and all h ∈ Hn, we
have

P
S∼Dm

[|LD(h)− LS(h)| ≤ ϵn(m,w(n) · δ)] ≥ 1− δ ·
∞∑
i=1

w(i) ≥ 1− δ

and this proves the claim. ■
Corollary 8.2.1. Let the notation be as above. Then, for all δ ∈ (0, 1) and for all
distributions D, with probability of atleast 1− δ, it is true that

∀h ∈ H, LD(h) ≤ LS(h) + min
n:h∈Hn

ϵn(m,w(n) · δ)

Proof. This clearly follows from the above theorem; let δ ∈ (0, 1) and let D be any
distribution. From the above theorem, we know it is true (simultaneously) for all n
and h ∈ Hn that

P
S∼Dm

[|LD(h)− LS(h)| ≤ ϵn(m,w(n) · δ)] ≥ 1− δ
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This means that for all n and all h ∈ Hn,
P

S∼Dm
[LD(h) ≤ LS(h) + ϵn(m,w(n) · δ)] ≥ 1− δ

So, if we have some h ∈ H, the above inequality implies that

P
S∼Dm

[
LD(h) ≤ LS(h) + min

n:h∈Hn

ϵn(m,w(n) · δ)
]
≥ 1− δ

and this proves the claim. ■
Definition 8.4. Let h ∈ H. We use the notation n(h) to mean the following.

n(h) := min {n | h ∈ Hn}

So, for every h ∈ H, n(h) represents the least natural number for which Hn(h) contains
h. By Corollary 8.2.1, we see that for all δ ∈ (0, 1) and for all distributions D, with
probability of atleast 1− δ over the choice of S ∼ Dm, it is true that

LD(h) ≤ LS(h) + ϵn(h)(m,w(n(h)) · δ)
(but note that the corollary is stronger than this statement).

8.2.1. Structural Risk Minimization. Motivated by the last definition, the structural
risk minimization paradigm finds a hypothesis h which minimizes the following.

LS(h) + ϵn(h)(m,w(n(h)) · δ)
So, instead of just minimizing the empirical risk (the first term above), we also added
a second term which is biased towards those h for which the difference between the
true risk and the empirical risk is not too high, which leads to better estimation error.

Theorem 8.3. Let H =
⋃

n∈N be a hypothesis class where each Hn satisfies the
uniform convergence property (the same setup as in the previous discussions). Let
w(n) = 6

n2π2 . Then the SRM rule is a non-uniform learner for H with

mH(ϵ, δ, h) ≤ mUC
Hn(h)

(
ϵ

2
,

6δ

π2[n(h)]2

)
Remark 8.3.1. So essentially we have enumerated the hypothesis classes in decreasing
order of weights (importance).

Proof. See Theorem 7.5 of the book; the proof is a bit long. ■
Theorem 8.4. Suppose H =

⋃
n∈NHn where each Hn has the uniform convergence

property. Then H is non-uniformly learnable.

Proof. This follows from the previous theorem. ■
Theorem 8.5. A hypothesis class H of binary classifiers is non-uniform learnable iff.
H can be written as a countable union

H =
⋃
n∈N
Hn

where each Hn is agnostically PAC learnable.

Proof. First, suppose H is non-uniform learnable using some algorithm A. For n ∈ N,
define the following.

Hn := {h ∈ H | mH(1/8, 1/7, h) ≤ n}
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It is then clear that
H =

⋃
n∈N
Hn

In addition to this, we will show that Hn is PAC learnable for all n. To show this,
we will show that VCdim(Hn) < ∞. Suppose for the sake of contradiction that
VCdim(Hn) =∞. Then, by Theorem 4.1 (No Free Lunch Theorem) applied with
m = n, it follows that there is some function f : X → {0, 1} and some distribution D
on X × {0, 1} such that with probability of atleast 1/7 over the choice of S ∼ Dn, we
have LD(A(S)) ≥ 1/8. But, this clearly contradicts the fact that mH(1/8, 1/7, h) ≤ n.
So, it must be true that VCdim(Hn) < ∞, i.e Hn is PAC learnable. This completes
the proof of the forward implication.

For the backward implication, of each Hn is agnostically PAC learnable, then clearly
each Hn has the uniform convergence property. Then via Theorem 8.4, we can con-
clude that H is indeed non-uniform learnable, and the SRM algorithm is a successful
non-uniform learner. ■
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