THEORY OF COMPUTATION

SIDDHANT CHAUDHARY

These are my course notes for the THEORY OF COMPUTATION course that I
took in my third semester in CMI. The notes are mostly self contained. Through-
out the document, the symbol B stands for QED.

Contents
L LANBUAEES . . ittt e e 2
2. Finite Automatonso e e 2
2.1, NoNn-determiniSmo it e e 2
2.2. Equivalence of NFAsand DFASttt 3
2.3. EpsilonTransitions. ...t e e 5
2.4. OperationsonRegularLanguages..........covveviiiiiiinnnnnnn. 5
2.5. HOMOMOIrPhiSMS ettt 6
2.8, QUOLIBNES . ittt e e 7
2.7. RationalLanguageso e 7
2.8, GNFAS . e e 8
2.9. Using quotients to prove non-regularity 9
2.10. TwoequivalenceRelations................cooiiiiiiiii i, 11
2.11. DFAMINIMIZAtION .. .o i e e e 12
2.12. PartitionRefinement............ ... i 13
2.13. PUumMpPIiNg LemMmMaottt e et e e 13
3. ContextFree Languages.........ciiiiiiii ittt 14
3.1. Closure Properties. e 16
3.2. HOMOMOrphiSmMS ... e 18
3.3, Derivation TrEeS. . ..ottt e e e 19
3.4. TheEmptinessProblem i 20
3.5. MembershipProblem......... ... i i 21
3.6. Chomsky Normal Form (CNF). ...t 22
3.7. Membership Problem Continued................... ... 23
3.8. Reuvisiting AClosure Property.........ccoiieiiiiiiiiiiinn, 24
3.9. PumpinglLemmafor CFLSoiiiiiii i 25
3.10. Greibach Normal Form i e 26
3.11. Push-Down Automatons............ccoiiiiiii i 28
3.12. Closure Properties of PDAS.ottt 30
3.13. Another Mode of Acceptance..............c.iiiiiiiiiiinnannn, 31
314, CFLsanNd PDAS e e 33
3.15. DeterministiC PDAS ...ttt e e 36
3.16. Closure of DCFLs under Complementation...................... 37
3.17. Parikh’s Theorem e e 37
4. Turing Machines and Computability............., 41
4.1. Non-DeterminisSmo e e e 43
Date: August 2020.

2 SIDDHANT CHAUDHARY

4.2. Universal TuringMachine. ... 44
4.3. Diagonalisation....... ... e e 45
4.4, More Undecidable Problems..............oooiiiiiiii i 46
4.5, RedUCHIONS ..ot e e e e e e 47
4.6. RiCESTheOremt e e e e 48
4.7. Post’'s Correspondence Problem....................coiiiiiiiiiit. 50
4.8. Minsky Machineso i s 51
4.9. Control State Reachability Problem............................... 51
4.10. 2-StaCKk PDAS ...t e e 52
4.11. Undecidability of 4-Counter Machines........................... 52
4.12. Undecidability of Minsky Machines and Godel Numbering 53
4.13. Universalityof CFL....... ... e 53

1. Languages

First, we begin with a formal definition of a language. This is an important idea
as we move on to study models of computation.

Definition 1.1. Let X be a finite set. The X is also called the alphabet. Let ¥*
denote the set of all finite words of the symbols in X (this can be formally defined
as the set of all sequences taking values in X where only finitely many terms
belong to ¥, but we don’t need to make that too formal here).

For instance, the alphabet of the English language is the set {A, B,C, D, ..., Z}
along with punctuation marks and case letters.

Definition 1.2. A language over X is a subset of X*.

These are formal notions which will be useful when we formally define compu-
tational tools in further sections.

2. Finite Automatons

Definition 2.1. A finite automaton M is a 5-tuple (Q, 2, A, Q, F') where the fol-
lowing hold:

(1) Q is afinite set of states.

(2) X is a finite alphabet.

(3) A C Q x X x (@ is the transition relation.

(4) Qo C Q is the set of initial states.

(5) F' C @ is the set of final states (also called accepting states).

The best way to visually represent finite automatons is via transition diagrams.
I won’t go through any examples here because this definition is fairly easy to
understand.

2.1. Non-determinism. Determinism in automatons in some sense refers to a
well-defined and well-predictable automaton, i.e given any state and any sym-
bol of the alphabet, there is exactly one edge going out of the state, and hence
the output given by the automaton will be well-traceable. The same is not true
for other automatons. We now formally define these notions.

THEORY OF COMPUTATION 3

Definition 2.2. Let M be a finite automaton. Then M is said to be a deterministic
finite automaton (or DFA) if M has exactly one initial state and from each state
and each symbol of the alphabet there is exactly one outgoing edge (or in other
words A is a function denoted by § : Q x ¥ — Q). If A is just a relation (and not
necessarily a function), then M is called a non-deterministic finite automaton
(or NFA).

The above definition makes precise the notion of an automaton being well-predictable.

Definition 2.3. Let M be a finite automaton, and let w = a;a5...a,, be a word,
where each a; € X. The run of M on w is defined as the walk

qoa1491024G2...anqp

where ¢; € Q, ¢ € Qo and (¢;,a;11,¢;) € A for all suitable i. Basically, this is one
possible route that the automaton can take. A run is accepting if ¢, € F, and
define

L(M) = {w € ¥*|M has an accepting run on w}

We also say that M recognizes or accepts the language L(M).
This motivates the following idea.

Definition2.4. Alanguage is said to be aregular language if some deterministic
finite automaton recognizes it.

2.2. Equivalence of NFAs and DFAs. Now, we will show that all NFAs can be
converted into a DFA. To make this more formal, given a language L which is
accepted by an NFA, there exists a DFA which accepts the same language. This
means that we can work with NFAs if that is easier.

LetA = (Q,%, A, F, Q) bean NFAthatacceptsalanguage L. Let B = (@', 3,0, F', Q)
be a DFA which is defined as follows: Q' = Z(Q) (power set), and Q) = {Qo} (so
we collapsed all initial state into one initial state). For ¢’ € ' and a € ¥, define

8(q',a) = {q € Q|Tq € ¢ such that (¢o,a,q) € A}

i.e, there is an edge from a subset of () to another subset of) with label « iff.
there is a state in the first set which has an outgoing edge with label a to a state
in the second set. Next, we have

Fr={SCQISNF # ¢}

i.e, the set of final states is the set of all subsets of () that contain a final state
in the original automaton. Upto this point, this construction is pretty natural.
Now we prove that the languages accepted by both these automatons are the
same, which will finish the goal of this section. Before proving the main theo-
rem, we prove a lemma and introduce a new notation.

Definition 2.5. Let M be a finite automaton, and let ¢, ¢’ be states. We use the

notation ¢ = ¢ if there is a run starting at ¢ and ending at ¢’ on the word w in
M.

Lemma 2.1. Let A be an NFA, and let B be the corresponding DFA obtained by
the subset construction. Let (), be a subset of () such that

Qo = @, (in the DFA B)

4 SIDDHANT CHAUDHARY
for some word w. Then,
q1 € Q1 <= Jqy € Qy such that gy = ¢, in the NFA A

In simple words, (), is precisely the set of all those states which are reachable
from some state in)y on w.

Proof. We prove this by induction on the length of w. For the base case, suppose
w = ¢ and suppose Q, — @Qp in B, implying that Q; = Q,. The statement is then
vacuously true, so the base case is established.

Suppose the statement is true for some fixed length of words, and consider
a word v’ of length one greater than this length. Let

w = wa

where a € Y, so that w has length length smaller by one. Suppose in the DFA B
we have

Qo = Q1 = Q2
and observe that §'(Q1,a) = Q2. We need to show that

¢ € Qy <= Jqy € Qy such that gy — ¢, in the NFA A

First, suppose ¢; € @Q),. So, there is some ¢; € Q); such that (¢1,a,¢) € ¢ (this is
the definition of edges in B). Moreover, by inductive hypothesis, there is some
g € Qo such that ¢y 2 in the NFA A. So, ¢y - ¢1 — ¢» is also a run, proving one
direction of the statement.

Conversely, suppose there is some ¢, € , such that ¢y — ¢, is a valid runin
the NFA A. We need to show that ¢, € Q,. Split the run as ¢y — ¢1 — ¢». By the
inductive hypothesis, we know that ¢; € @, and by the definition of edges in B,
it follows that ¢, €)». This completes the induction proof. |

Now, we prove the equivalence of DFAs and NFAs.
Theorem 2.2. Every NFA is equivalent to a DFA.

Proof. Let Abe an NFA, and let B be the DFA obtained by the subset construction.
We show that

L(A) = L(B)

First, let w € L(B), so that there is an accepting run Q, — @, in the DFA B,
implying that), is a final state (Q; € F”’). Let ¢y € @ such that ¢; € F (by
definition of finals states in B). By Lemma 2.1, there is some ¢, €)y such that
¢ — q1 isarun, and since ¢; € F, it follows that w € L(A), so that L(B) C L(A).

For the reverse inclusion, suppose w € L(A), so that there is a run ¢y — ¢
with ¢o € Qpand ¢, € F. Let Q) = @, be the unique run in B (since B is a DFA).
By the same Lemma 2.1, it follows that ¢; €)1, and hence Q; € F',i.e w € L(B),
implying that L(A) C L(B). This completes the proof. |

As a corollary, we see that

Corollary 2.2.1. Any language is regular if and only if some NFA recognizes it.

THEORY OF COMPUTATION 5

2.3. Epsilon Transitions. An epsilon transition between two states just means
that you can jump from one state to another without consuming any input. So,
FAs with epsilon transitions are NFAs where the alphabet is U{¢}. We will show
that e-NFAs have the same power as NFAs, and hence all these computational
tools have the same power. Before continuing, we define the notion of an epsilon
closure.

Definition 2.6. Let)/ be an ¢-NFA. Let ¢, ¢» be states such that there is a path
from ¢, to ¢, using only epsilon transistions. Then, we denote this by

Q1E—>CI2

Next, suppose R C Q. Define
¢(R) := {q € Q|3r € Rsuch thatr < ¢}

and ¢(R) is called the epsilon closure of R.

Theorem 2.3. Any language recognized by an ¢-NFA is also recognized by some
NFA. Hence, a language is regular if and only if some ¢-NFA recognizes it.

Proof. Let A be an ¢-NFA. We define a new NFA B as follows: B has the same
states as A, and all non-¢ transitions also remain the same. Next, if

Uu i) v i) w
where a € ¥, then we add a transition (u,a,w) to B. Finally, the set of initial
states in B is €((Q)y), i.e it is the epsilon closure of the initial states of A. The
final states of B are the same as the final states of A. It is then easy to argue

that L(A) = L(B). Hence, the proof is complete (the missing details are very
minor). [|

2.4. Operations on Regular Languages. In this section, we will see what oper-
ations on regular languages as sets preserve their regularity. With the power
of e-NFAs in our hand, the task becomes much simpler than only having DFAs to
work with.

Theorem 2.4. Let R be the class of all regular languages over some alphabet.
(1) If L, L, € R, then L, U L, € R.
(2) If L, € R, then (L,)° € R.
3)IfL,Ly € R,then LiN Ly € R.

Proof. For (1), take the disjoint union of the DFAs corresponding to L, and L,
(note that the resultant FA in an NFA).
For (2), this is easily done by swapping the final and non-final states in the
DFA (see Problem 3. in PSET-2).
(3) is true because
Ly N Ly = (LS U LS)®
and the fact that (1) and (2) hold. [|

Definition 2.7. Let A = (Q1,3, 61, F1,Q}) and B = (Q2, %, b2, I3, Q3) be two FAs.
Define the cartesian product of A, B to be an FA M with Q = Q; x Q5 over the
same alphabet, and Q, = Q} x Q2. The set of final states of M is either I} x F,
OPFl XQQUQl X FQ.

6 SIDDHANT CHAUDHARY

Itis easy to see that the cartesian product of two FAs gives an FA which accepts
either the union or the intersection of two languages. This gives another proof
of the closure of regular languages under these operations. Next, we see two
more important closure properties.

Theorem 2.5. Let R be the set of all regular languages over some alphabet.
(1) If L, L, € Rthen L, - L, € R (where the dot represents concatenation).
(2) If L € R, define
=0

where L° = {e}. Then L* € R (this operation is called the Kleene Star
operation).

Proof. We give a construction in either case.

(1) Let M, and M, be DFAs for L, and L, respectively. Make a new DFA M
as follows. Put M; and M, next to each other, and let the start state be
the start state of M. From every final state of A/, add an e-transition to
the start state of M, and let the final states be final states of M,. This
automaton M clearly recognizes L, - Lo.

(2) Let M be a DFA accepting L. Add a new state to M, and make it the initial
state, and also make it a final state (this ensures that ¢ is accepted by the
new automaton as well). From this new state, and an e-transition to the
old initial state, and let all old final states remain final states. Moreover,
from every old final state, add an e-transition to the old initial state. Thus,
M accepts L*, and this completes the proof.

[|
2.5. Homomorphisms. In this section, we see yet another closure property.

Definition 2.8. Let X, I" be two alphabets. A homomorphism from X* to [is a
map h : ¥ — '« which extends to a map on X* which preserves the concatena-
tion operation.

Homomorphisms between alphabets are very similar to homomorphisms be-
tween free groups, but not exactly. Throughout the results that follow, X and I
will be two alphabets.

Theorem 2.6. Let . C X* be regular, and suppose h : ¥* — I'* is a homo-
morphism. Then, h(L) is also regular. Hence, homomorphic images of regular
languages are regular.

Proof. Since L is regular, take a FA that accepts L, say M. Now, consider the
following automaton: if there is an edge ¢; - ¢, in M where s € ¥, make a path
between ¢; and ¢, in the new automaton such that the edges of the path are
labeled with h(s). The initial and final states of the new automaton are the same
as those of M. Note that i(s) could possibly be ¢, which will form an e-NFA. It is
clear that the language of the new automaton is i (L), completing the proof (the
minor details are easy to verify). |

Next is the question of taking inverse images under homomorphisms.

Theorem 2.7. Let h : X* — I'* be a homomorphism, and let L C T'* be regular.
Then, h='(L) is also regular.

THEORY OF COMPUTATION 7

Proof. This is very similar to the previous construction. Suppose M is an au-
tomaton that recognizes L C I'*. Consider the following automaton: if there is

a path ¢; ﬂi g2 in M for some s € ¥, add an edge ¢; > ¢, in the new automaton,
and the initial and final states in the new automaton are the same as those in
the original. In that case, it is clear that h~!(L) is recognizable, and this proves
the claim. [|

2.6. Quotients. Here, we will see yet another closure property of regular lan-
guages.

Definition 2.9. Let L, L, C ¥* be any two languages. Define
Li'Ly = {w|uw € L, for some u € L}

In simpler words, L; 'L, is the set of all words of L, with words of L, collapsed
toe.

Theorem 2.8. Let L,,L, C ¥* be any two languages such that L, is regular.
Then, L' L, is also regular.

Proof. Let M be a DFA accepting L,. Now, we make a new FA)’ as follows: put
M = (Q,%,A,F,Qf),i.e M'is exactly the same as M except for its initial states.
Let ¢y € Qo be the initial state of M. Then, put

Qy=1{q€Q:q = qfor someword win L}
and it is easy to see that M’ accepts L;'L,. This completes the proof. []

Remark 2.8.1. Even though the above automaton M’ recognizes L, L, deter-
mining (), may not be easy to do (as computing the states reachable by travers-
ing words of L; might not be easy if L, is not regular). However, if L, is known to
be regular, we can use the product of the two automatons recognizing L, and
L, to determine Q.

2.7. Rational Languages. Upto this point, we have studied the closure prop-
erties of regular languages. From here, we will try and study another class of
languages.

Definition 2.10. Let RAT denote the smallest class of languages that has the
following properties.

(1) RAT contains all finite languages.

(2) RAT is closed under union (binary union, not arbitrary unions).
(3) RAT is closed under concatenation of languages.

(4) RAT is closed under the Kleene star operation.

Then, any language belonging to RAT is called a rational language.

A related notion is that of rational (or regular) expressions, which we will now
define.

Definition 2.11. Fix an alphabet Y. Call R a regular expression if R is equal to
one of the following:
(1) ¢, i.e the empty language.
(2) {a}, where a € Y. This represents a singleton language, and is denoted
by a.
(3) Ry U Ry, where R; and R, are regular expressions. This is denoted by
R1 + Ry, and represents the union of the two languages.

8 SIDDHANT CHAUDHARY

(4) R:- Ro, where R, R, are regular expressions. This denoted the concate-
nation of the two languages.
(5) (R1)*, where R, is a regular expression.

Consider the class of all languages which are described by regular expres-
sions. Clearly, this class satisfies the conditions of Definition 2.10, and hence
this class is precisely RAT.

Theorem 2.9. Any language belonging to RAT is regular.

Proof. This can be proved by induction on the length of the regular expression
describing the language. The base cases are true, because ¢ is regular, {a} is
regular for any a € ¥ and {¢} is also regular. Moreover, the class of regular
languages is closed under (binary) union, concatenation and Kleene star, and
this proves the claim. [|

The natural question that follows is this: is the converse of the above theorem
true? That is, can every regular language be described by some rational ex-
pression? We will investigate this question in the upcoming sections.

2.8. GNFAs. To answer the question asked at the end of the last subsection,
we introduce a new type of automaton, called a generalised non-deterministic
finite automaton. The basic idea is that in a GNFA, transitions are regular ex-
pressions, i.e we can go from one state to another via words in the language
described by the regular expression labeling the transition. We make this pre-
cise as follows.

Definition 2.12. A generalised non-deterministic finite automaton M is a 5-
tuple (Q, %, A, F,Qy) where

ACQXZxQ
where Z is the set of all regular expressions over X..

Now, we will prove a surprising equivalence, which answers the question we
asked before.

Theorem 2.10 (Kleene’s Theorem). Any regular language is described by some
regular expression. Hence, RAT is the set of all regular languages.

Proof. Let L be a regular language, and let M be a DFA that accepts L. We will
use a method called state elimination to convert M into a GNFA.

We assume that M has only one final state. If M has multiple final states,
then we can make |F'| copies of M, each of which has only one final state, we we
can take the disjoint union of these DFAs. So, if we find a regular expression for
each of these DFAs, we can just add these expressions to get the final regular
expression needed.

Now, suppose M has k states, where &k > 2. We interpret M as a GNFA. So,
there is some state ¢ € M such that ¢ is neither the initial state nor the final
state. We will eliminate q to make a new GNFA)/’ as follows. Suppose there are
states ¢, ¢» such that

el €2
qr —q — G2

is a pair of transitions, where ¢, ¢, are regular expressions. Moreover, sup-
pose ¢ - ¢2, ¢ = ¢ are also transitions in the GNFA (if these transitions don’t

THEORY OF COMPUTATION 9

exist, then e;, e, = ¢). So, in the new GNFA)M, all old transitions will remain, and
we add the transition

eiejez+es

G — 42
and it is clear why this preserves the language. We keep doing this until there
are only two (or one, in case the initial state is also the final state) states left. If
the initial state and the final state are the same, then the expression in the self-
loop will be the regular expression for the given language. If the initial and final
states are different, say ¢, and ¢, then suppose in the final GNFA, the transitions
are as follows:

€1
do — qo
q0 = qyf
€3
qr = 4f
€4
ar — 4o
The regular expression for the language is
(€] + eaezeq) eses
and this completes the proof. |

2.9. Using quotients to prove non-regularity. Inthis short section, we will see
a technique of proving that a language is not regular.

Proposition 2.11. Let L be a regular language, and let u,v € ¥*. Let M be a DFA
accepting L. If u,v reach the same state in M, then

uw 'L =0v7'L

Proof. By the construction given in Theorem 2.8, we see that the same NFA
accepts u~!L and v~'L, and hence these two languages must be the same. N

Corollary 2.11.1. Suppose L is a regular language. If w='L # v='L, then u,v
must reach different states in M.

Now, we ask similar questions, and see that sometimes the answer is negative,
as in the following examples.

Example 2.1. Suppose v 'L = v~ 'L. Does it follow that «,v € L? Consider the
following example. Let L = {ab,bb}, u = a and v = b. So, we have

u 'L = {b}
and

v 'L = {b}
sothat u™'L = v~'L. But clearly, u,v ¢ L.

Example 2.2. Suppose u,v € L. Does it follow that «='L = v=!L? Again, the
answer is no, by considering L = {b,bb}, u = band v = bb.

Now, we see an application of the above corollary.

Theorem 2.12. Let L be a regular language. Then, L has finitely many quo-
tients. In fact, the number of states in any DFA accepting L is bounded below
by the number of quotients in L.

10 SIDDHANT CHAUDHARY

Proof. Suppose L is a regular language. If L has infinitely many quotients, then
we can find infinitely many words which reach distinct states, and hence no
finite automaton will accept L, a contradiction. So, L must have finitely many
guotients. The same observation shows that the number of states in any DFA
accepting L is bounded below by the number of quotients. |

Example 2.3. Let us show that the language
L ={a"t"|n > 0}

is not regular by this technique. Given any n € N, consider the word «”. Let
n1,no € N,and without loss of generality, suppose n, < n,. Observe that (a™)~'L
contains the word 0™, but the word 5™ is not contained in (a«™2)~'L. Hence, we
have found infinitely many quotients, and hence this language is not regular.

Now, consider the following question: if the number of quotients of L is finite, is
it regular?
Lemma 2.13. For any u,v and any language L, we have

(uwv) 'L =v" (u'L)
Proof. First, suppose w € (uv)~'L, and hence vvw € L, implying that vw € u'L,
and hence w € v~*(u~'L). Conversely, suppose w € v~*(u"'L), implying that

vw € u 'L, and hence uwvw € L, and hence w € (uv)~'L. This completes the
proof. |

Example 2.4. We try to enumerate all quotients of
(aa +bb)*b =L

We have
e'L=1L
a 'L =alaa+bb)*'b=a-L
b L = b(aa+bb)*—|—6:b-L+e
(aa)™ a(a'L)=1L
(@)L= b e) = ¢
(ba) (b_lL) =0
(bb)~

It can be deduced that the residuals of L are
La-L,b-L+e¢
We now answer the question we asked before the example.
Theorem 2.14. If a language L has finitely many quotients, then it is regular.
Proof. We make a DFA as follows. Suppose the language L has quotients
Ly, Lo, ..., Ly

for some k € K. Without loss of generality suppose L; = L. Make a DFA with
k states each labelled by a label L, for some 1 < i < k. Make L, = L the initial
state. The final states are all those labels L; which contain ¢ (the empty word).

THEORY OF COMPUTATION 11

The transitions are also clear: given any letter a € ¥ and a state L;, the transi-
tion from L, through a goes to the state a~'L,. It is clear that L will be accepted
by this automaton. This construction is called the Nerode Automaton. |

Corollary 2.14.1. If u"'L = v~'L, then u,v reach the same state in the Nerode
Automaton for L. Moreover, if the number of quotients of L is finite, then the
Nerode Automaton contains the least number of states required for any DFA
(which is equal to the number of quotients).

Proof. Any word u goes to the state v~ 'L in the Nerode automaton, so if u='L =
v~'L then u, v go to the same state in the Nerode Automaton. The second claim
is clear, because any DFA accepting L must contain atleast K states, where K
is the number of quotients of L. |

2.10. Two equivalence Relations. In this section, we will see two new equiva-
lences for words over an alphabet.

Definition 2.13. Let L be any language. For words u,v € ¥*, we say
U=rv
if 'L = v 'L. wand v in this case are said to be L-equivalent.

Proposition 2.15. L-equivalence is an equivalence relation. Moreover, if u =,
v, then ua =y, va for any word q, i.e = is a congruence.

Proof. That the relation is an equivalence relation is clear. To show that it is
a congruent, suppose u =; v, and let « be any word. Suppose w is a word
such that uaw € L, which implies that aw € v 'L, and hence aw € v~'L, and
hence vaw € L, which means that w € (va) 'L, implying that (ua) 'L C (va)~'L.
Swapping the role of © and v, we see that this is actually an equality. |

Remark 2.15.1. This relation is called the Myhill-Nerode relation.

Definition 2.14. Let A be a DFA. We say that u =4 v if w and v reach the same
state in A. This is called A-equivalence.

Proposition 2.16. Let A be a DFA. Then A-equivalence is an equivalence rela-
tion. Like =, =4 is also a congruence.

Proof. It is clear that =4 is an equivalence relation. Now, if © and v reach the
same state in A4, it must be true that uwa and va reach the same state, because A
is a DFA. Hence, =4 is a congruence. [|

Proposition 2.17. Let A be a DFA, and let L be the language accepted by A.
Then if u =4 v, then u =1 v (the converse need not be true). So, =, refines
=r. Morever, if A is the Nerode Automaton for L, then =, and =, are the same
relations.

Proof. Theclaimthat =, refines =, isjust Proposition 2.11. By Corollary 2.14.1,
it follows that if A is the Nerode Automaton then these two relations coincide.
[|

An immediate corollary of this is the Myhill-Nerode Theorem.

Corollary 2.17.1 (Myhill-Nerode Theorem). Let L be a language. Then, L is reg-
ular if and only if =, has finitely many equivalence classes. Moreover, the least
number of states in a DFA accepting L is equal to the number of equivalence
classes in =;.

12 SIDDHANT CHAUDHARY

Proof. Suppose Lisregular. By Theorem 2.12, we know that L has finitely many
quotients. Let N be the Nerode Automaton for L. By Proposition 2.17, it follows
that =y and =, are the same relations, and hence =; has finitely many equiv-
alence classes. Conversely, if =; has finitely many classes, then it is clear that
L has finitely many quotients, and hence L is regular by Theorem 2.14. In any
case, we see that =5 and =; are the same relations. The second part of the
corollary is easy. |

Using these ideas, we give another construction. Suppose L is a regular lan-
guage, so that =; has finitely many quotients, and this number is equal to the
number of states for the Nerode Automaton NV for L. Make a DFA M as follows:
the states of M are equivalence classes of =;, and the transitions are as per
the congruence. A state is final if it contains any word of L (and in that case, all
words in that state will be words of L), and the initial state is the equivalence
class containing . It is easy to see that this automaton recognizes L. In fact, as
we see in the following proposition, this automaton is isomorphic to V.

Proposition 2.18. Let A be a DFA for L with the same number of states as the
Nerode Automaton for L. Then A is isomorphic to N. So, N is the unique DFA
with the least number of states that accept L.

Proof. (Details missing). The rough idea is as follows. Let ¢y be the initial state
of A, and let ¢}, be the initial state of N. The isomorphism is as follows. If ¢y = ¢
in Aand ¢, = ¢’ in N, then map ¢ — ¢'. The only thing left to prove is that this is
an isomorphism, but I won’t do that here. |

So the Nerode Automaton gives us a new technique to see whether two regular
languages are the same. If we can show that their Nerode Automatons are
isomorphic, then we are done.

2.11. DFA Minimization. In this section, we will see a technique of minimizing
DFAs. First, let us prove a simple fact which will be the key idea in this process.

Proposition 2.19. Let L be a regular language, and let A be any DFA accepting
L such that all states of A are reachable from the initial state of A. Let N be the
Nerode Automaton for L. If A has strictly more states than N, then there are
states q1, ¢» in A such that

Lq = Lqy
where Lq is defined as

Lq = {w|w is accepted in A if ¢ was made the initial state}

Proof. Since every state g in A is reachable from the initial state of A, we know
that Lq is a quotient of L. More specifically, if u is a word that reaches ¢, then

Lg=u"'L

Now, since A has more number of states than NV, by the pigeonhole principle, it
must be true that Lq¢; = Lq, for distinct states ¢, ¢ in A, because the number of
qguotients of L is equal to the number of states in N. This completes the proof.

|

Remark 2.19.1. In N, Lq, # Lqg, for distinct ¢, ¢2, which follows from Proposi-
tion 2.17.

THEORY OF COMPUTATION 13

Next, we will see that states for which Lq¢; = Lgs is true, can be merged to-
gether.

Proposition 2.20. Let A be a DFA accepting L, and suppose A has states ¢, ¢»
such that
Ly = Lgz

Make a new DFA A’ with one less state, where ¢, q¢; are merged to form the state
(q1,). If there is an edge ¢ = q1 or ¢ = ¢ in A, make an edge ¢ = (q1,¢) in A,
If there are edges q; = ¢, and ¢, % ¢, in A, make an edge (q;,q;) = ¢} in A". If
one of qi, q» is initial or final, make (q1, g2) initial or final respectively. Then, A’ is
a valid DFA with

L(A)=L(4")
Proof. The only key fact we need to verify here is that
Lgy = Lgy
where ¢, ¢, are as given above. This fact is easy to verify, and I will leave it. The
claim L(A) = L(A’) immediately follows from this. [

The above two propositions give us a DFA minimisation algorithm, which goes
as follows:

(1) Let A be the start DFA. Delete any state which is not reachable from the
initial state.

(2) If Lg; = Lg- for distinct states, combine them as in Proposition 2.20.

(3) Repeat (2) until it can’t be repeated.

Proposition 2.19 immediately tells us that when the algorithm stops, the num-
ber if states in the DFA is exactly equal to the number of states in the Nerode
Automaton. Proposition 2.18 implies that in the end, we get the Nerode Au-
tomaton.

2.12. Partition Refinement. In this small section, I will discuss another tech-
nigue of DFA minimisation, and I won’t prove correctness here. This technique
is called partition refinement (This discussion is very informal. I may want to
prove these rigorously at some point).

The basic idea is as follows. Suppose we are given a DFA M for a language,
which we want to minimize. So, we put all states in one class. Clearly, final
and non-final states cannot belong to the same class, as final states accept the
word ¢, but non-final states don’t. So, we refine this class into two classes, one
for the non-final states and one for the final states. We continue this process
further; if at any stage, there are two members in the same class, which have
a transition into different classes, we split those states again, i.e the two states
must belong to different classes. We keep doing this until this cannot be done,
and the final DFA will be the minimal DFA.

2.13. Pumping Lemma. This is a very useful tool to prove non-regularity for
some languages.

Theorem 2.21 (Pumping Lemma). Let M be a DFA with n states, and suppose
M accepts a word of length > n. Then, w can be written as

w = Yz

14 SIDDHANT CHAUDHARY

where y # ¢ such that zy*z is accepted by M for all k € N U {0}. Moreover,
x,y can be chosen in a way which satisfies |zy| < n. In that case, the language
L(M) is infinite.

Proof. Refer to the solution of Problem 1 of PSET-2. |

3. Context Free Languages

We will begin by defining the notion of context-free grammars.

Definition 3.1. A context-free grammar G is a four tuple (N, X, S, P) where the
following hold:

(1) N isafinite set. Each member of N is called a variable or a non-terminal.
(2) X is a finite set, and each member is called a terminal.

(3) S € N is a starting variable.

(4) P is a finite set of productions,i.e P C N x (N U X)*.

Definition 3.2. Let o, § € (N UX)*. We say that (5 is derived from « in one step if
o= a1 Xy

for some oy, a0 € (N UX)*, X € N such that
p = aryas

where (X, v) € P, and this is denoted by « — 5. More generally, § is said to be
derived from « if there is a sequence of derivations

a:agéa1—>...—>ak:ﬁ
and this is denoted by o = £.

Definition 3.3. Let G = (N, X%, S, P) be a context-free grammar with starting
variable S. The language of the grammar L(G) is defined as

L(G) = {w € ¥*|S = w}

If alanguage L is the language of some context-free grammar, then L is said to
be a context-free language.

Example 3.1. Consider the context free grammar G where the productions are
S —aSh | €

The claim is that
L(G) = {a"b"|n > 0}

which can easily be proven by induction. Note that, this language is known to
be not regular, but it is context-free.

Example 3.2. Let G be given by
S —aSb | bSa | SS | €

The claim is that
L(G) = {w] |w|, = |wpl}
where ¥ = {a, b}.

THEORY OF COMPUTATION 15

First, we show that every word generated by G has equal number of «’s and b's.
Suppose a € (N U X)* such that S = «, and we show that the number of a's in
a is equal to the number of 's in «. Suppose S derives « in zero steps. Then,
a = S, so the base case is true. For the inductive step, suppose S derives ainn
steps, say

S —=a, >«

By inductive hypothesis, the number of ¢'s in «,, is equal to the number of ¢'s in
a,. Now, any transition from «,, to o adds the same number of a’s and ¢'s. This
completes the induction proof.

Next, we prove the converse, i.e every word with equal number of ¢'s and V's
can be generated by GG. If w has equal number of ¢’s and b's then one of the
following is true.

(1) w=-c.

(2) w = aw,bwhere |w;|, = |wi]p.

(8) w = bwia where |w;|, = |wip.

(4) w = wywe and wy, wy # € With |wy|, = |wi|y and |ws|, = |wap.
Now, we can prove the converse by induction on the length of w. The base case
is when w = ¢, which is clearly accepted by G. Suppose w = a;as...as,. SO, one
of the cases (2), (3) or (4) must apply. Suppose (2) applies. So

w = a(ay...as,—1)b
By induction hypothesis, S = as...as,_; and then we have
S — aSb = aay...as, 1b

and similarly case (3) can be handled. For case (4), suppose w = wyws. By
inductive hypothesis, S = w; and S = w,. So, we have

S =SS 5w S S wiwy
and hence this case is also proven. So this completes the proof by induction.
Example 3.3. Let G be given by
S—aSa | bShb | a|b]| e

It is easy to see that this grammar generates the set of all palindromes over
{a,b}.
Example 3.4. Let G be given by

S—aSb | T

T —cTd | e

The claim is that
L(G) ={a"c™d™V"|n > 0,m > 0}
and this is not hard to prove.
Example 3.5. Let G be the grammar given by
S — 515
S —aSih | €
Sy — ¢Sod | €

16 SIDDHANT CHAUDHARY

and the claim is that
L(G) = {a"t"c¢™d™|n > 0,m > 0}
Again, this is not very hard to prove.

Example 3.6. Consider the grammar G given by
S—(S)| SS | e

and we claim that L(G) is the Dyck Language (which was introduced in PSET-4),
where the alphabetis {(,)}. It is a good exercise to prove this.

The next theorem gives the relationship of these grammars to regular lan-
guages.

Theorem 3.1. Every regular language is context free.

Proof. Let L be a regular language, and let M = (Q, >, 9, qo, F') be a DFA that ac-
cepts L. Using this DFA, we will construct a context free grammar that accepts
L. Let GG be a context-free grammar as follows: the variable or non-terminals
for G is the set () (set of states), the set of terminals is simply > and the starting
non-terminal S is ¢, (the starting state). The set of productions is

P={q—aqd|q> ¢ isatransitionin M} U {q — ¢|qg € F}

In other words, transitions have been converted to the suitable productions,
and each final state has a production going to . It is clear that the language of
this grammar is L, and this completes the proof. |

Motivated by the grammar in the above proof, we have the following definitions.

Definition 3.4. Let G = (V, X, S, P) be a context-free grammar. If every RHS in a
production has atmost one non-terminal, then GG is said to be a linear grammar.
Moreover, if the a linear grammar G has the property that if there is a non-
terminal in the RHS of a production, it appears as the last letter, then G is said
to be a right linear grammar.

So, viaTheorem 3.1, we have shown that every regular language is recognized
by a right-linear grammar. It turns out that the converse is also true.

Theorem 3.2. A language is regular if and only if it has a right linear grammar.

Proof. One direction is just Theorem 3.1. For the converse, see Problem 3 of
PSET-6. |

Remark 3.2.1. One can similarly define the notion of a left linear grammar, and
similar arguments hold for those as well. More information can be found in
PSET-6.

As seenin Example 3.1, linear grammars may generate non-regular languages.

3.1. Closure Properties. Let us now explore some closure properties of CFLs.

Theorem 3.3. Suppose L., L, are CFLs. Then the following hold.
(1) L1 U Ly is a CFL.
(2) Ly - LyisaCFL.
(3) L} is a CFL.

THEORY OF COMPUTATION 17

Proof. Let G, = (N, %, 51, P) and Gy = (N, 3, So, P») be context-free grammars
for L, L, respectively. Without loss of generality assume that Ny N N, = ¢, i.e
the set of non-terminals in both grammars are completely different.

(1) Consider the context free grammar G as follows. Let S ¢ N; U N, be a
new symbol, and let S be the starting non-terminal for G. Let the set of
productions be

{S-)Sl ’ SQ}UPlL_JPQ

and clearly the set of non-terminals for G is N U N, U{S}. It is clear that
the language of G is L U L.

(2) Consider the construction given in (1), with the only difference being the
production S — S; | Ssis replaced by S — 515;.

(3) For the Kleene star operation, consider the grammar G as follows. Let
S ¢ N; be a new symbol, and let this be the starting symbol for G. The
set of all non-terminals is simply N; U {S}, and let the set of productions
be

{S— 8515 | efUP
and it is clear that G accepts the language Lj.
|

Remark 3.3.1. In the proof of (3) above, we added a new state S instead of just
adding the production S; — 515, | €. It needs to be pointed out that this is an
important step, and just adding this production may accept words which are
not in the Kleene Star operation. For instance, consider the language in Exam-
ple 3.1. The productions were S; — aS;b | ¢, and the language accepted was
{a™"|n > 0}. Now, suppose we add the production S; — 5;5;. Then, observe
the following sequence of derivations

S; — 5151 — aS1baS1b — aS15:baS1b — aaS1baS;bbaS1b — ... — aababbab

and this word is clearly not in the Kleene Star of this language. The problem is
that S; is able to duplicate itself at any point of time.

Now, here are two important examples highlighting the limitations of context-
free grammars.

Example 3.7. L = {a"b"c"|n > 0}. We will show in the subsequent sections that
this language is not a CFL (go to Example 3.13 to see the proof).
Observe that this language can be written as the intersection of the two lan-
guages
Ly ={a"b"c*|n > 0}
and
Ly = {a"b"c"|n > 0}
and observe thatboth L, L, are CFLs. So, it follows that CFLS are not closed un-

der intersections, and moreover since they are closed under unions, it follows
that CFLs are also not closed under complementation.

Example 3.8. L. = {ww|w € ¥*}. Go to Example 3.14 to see a proof of why this
language is not a CFL.

18 SIDDHANT CHAUDHARY

Example 3.9. Here, we will explicitly show by example that CFLs are not closed
under complementation. Let L be the language in Example 3.8, and we consider
L°. We will show that L¢ is a CFL, and since L is not, it will prove our claim.
Observe that

L¢ = {odd length words} U {even length words that are not of the form ww}

Observe that the set of all odd length words is a regular language, and hence
it is a CFL by Theorem 3.1. Since CFLs are closed under union, it is enough to
show that the language

L, = {even length words that are not of the form ww}
is a CFL. Observe that any word w in L, is of one of the following forms
w = zxaxyby for some words z,y
w = xbryay for some words z,y

and this is not hard to prove. So, the context free grammar for L, is the follow-
Ing.

S — 5.5 | SpSa

Sa = aSaa | bSeb | aSyb | bS.a | a

Sy — aSpa | bSpb | aSpb | bSpa | b
and this completes the proof.

Proposition 3.4. If L is a CFL and R is a regular language, then L N Ris also a
CFL.

Proof. The proof is given in a subsection below. |

Example 3.10. Consider the language
L =A{wl|wla = |wly = |w|c}
and we show that this is not a CFL. Suppose L is a CFL. Consider the language
R = a*b*c*, which is regular. So, by Proposition 3.4 we see that
LNR={a""c"|n >0}
is a CFL, which contradicts Example 3.7. So, L is not a CFL.

3.2. Homomorphisms. Let us now see whether CFLs are closed under homo-
morphisms and inverse homomorphisms.

Theorem 3.5. Let X,I" be two alphabets, and let L be a CFL over Y. Suppose
h: ¥ — I isamap, and without loss of generality regard h as a homomorphism
h:¥* — T'"*. Then, h(L) is a CFL overT.

Proof. Let G = (N, X, S, P) be a context-free grammar that accepts L. Consider
the grammar G’ = (N, T, S, P') as follows. If S — wis any productionin G, where
w € (N UX)* let w' be the word in (N UTI')* where each occurrence of a letter
a € Yinwisreplaced by h(a) inw'. It is clear that the grammar G’ accepts h(L),
completing the proof. Proof is incomplete. Need to fix it. |

Theorem 3.6. Let X, " and h be as in the above theorem. Let L be a CFL overT.
Then, h~'(L) C ¥* is a CFL over X..

THEORY OF COMPUTATION 19

Proof. This will be a bit hard to prove by using only CFGs. See the proof of
Proposition 3.15 using PDAs. |

Example 3.11. Consider the language
L ={a"bt"c"d"|n > 0}

Consider the homomorphism that fixes a, b, c and sends d — ¢. By Example 3.7,
the language {a"b"c"|n > 0} is not a CFL, and hence by Theorem 3.5, the lan-
guage L is not a CFL.

Example 3.12. Consider the grammar G as follows.

S—aB | DA | SS | €

A—aS | bAA

B —bS | aBB
(Two questions to be answered. What is the language generated here and does
the language change if we replace A — aSby A — aand B — bS by B — b. What

if we drop S — SS5? Apparently yes. Conjecture is this grammar generates
words with equal number of «’s and ¢'s.)

3.3. Derivation Trees. This section will be a bit informal, but all of the discus-
sion can be easily formalised. We will mostly work with a single example.

Consider the following context free grammar.
S — aSbS | bSaS | e
Itis easy to see that the word abba is accepted by this grammar, and we see that
S — aSbS — aSbbSaS — abbSaS — abbaS — abba

is a valid sequence of derivations for this word. Now, this sequence of deriva-
tions can be represented by drawing the tree given above, and this tree is called
a derivation tree. The numbers 1 — 5 written next to the non-leaf nodes repre-
sent the order in which those terminals were rewritten in the derivation of the
word. So this means that every sequence of derivations has a unique deriva-
tion tree, but the converse is not true; the same derivation tree can represent
two distinct sequences of derivations. For instance, in this example, we can
switch the orders of 4 and 5, to get a different derivation for the same word.
However, there is a canonical derivation for every derivation tree, which we
will now define.

20 SIDDHANT CHAUDHARY

Definition 3.5. Suppose in a grammar, there is a sequence of derivations for
a word w. The left-most derivation for w is that derivation in which at every
sequence, the left-most non-terminal is rewritten. Equivalently, it is the deriva-
tion corresponding to the derivation tree of w which is obtained by DFS on the
tree, where children of a node are visited from left to right.

For the derivation tree given above, the left most derivation is
S — aSbS — abS — abbSaS — abbaS — abba

It then follows easily that every derivation tree has a unique left-most deriva-
tion,and hence thereis a bijection between derivation trees and left-most deriva-
tions.

Remark 3.6.1. Analogously, one can define the notion of the right-most deriva-
tion, and similar results hold.

Definition 3.6. A context-free grammar is said to be ambiguous if some word
has multiple derivation trees, or equivalently, if some word has multiple left-
most derivations.

3.4. The Emptiness Problem. Now, we will describe two algorithms to see if,
given a context free grammar G, L(G) is empty. First, we will prove a simple
fact about the size of derivation trees.

Proposition 3.7. Let GG be a context free grammar, and suppose L(G) # ¢, i.e
there is a derivation tree T generating a word. Then, there is some derivation
tree T" generating a word in L(G) such that the height of T’ is bounded above
by |N|, where N is the set of non-terminals in G.

Proof. This proofideaisvery intuitive. Suppose there is some tree T generating
a word in L(G), and hence all the leaves of T" are terminals. Suppose there
is some path in 7" from the root to a leaf such that a non-terminal repeats in
the path. Let 77 be the sub-tree rooted at the second occurrence of the non-
terminal in the path. Replace the sub-tree rooted at the first occurrence of
the non-terminal by 7}, and let the new tree be 7”. It is then clear that 7" is
a valid derivation tree generating some word in L(G). We can keep repeating
this procedure until all the non-terminals on every path from the root to a leaf
are distinct. In that case, the height of the resultant tree is atmost |N|. This
completes the proof. [|

Remark 3.7.1. The above fact gives us a simple algorithm to solve the empti-
ness problem. Given a grammar G, enumerate all possible derivation trees of
height atmost |N|, where N is the set of terminals of G. If some tree has all its
leaves as terminals, then L(G) is non-empty. This algorithm is not very efficient
however.

We shall now see a more efficient algorithm to solve the same problem.

Definition 3.7. Let G = (N, %, S, P) be a context free grammar. Let N, = ¥, the
set of terminals. For each i € N, we inductively define

N;={z € N|lz — aforsomea € (NyU ... UN,;_1)*}

THEORY OF COMPUTATION 21

We will now prove another simple fact, which will lead to a simpler algorithm
for the emptiness problem.

Proposition 3.8. Let GG be a context free grammar, and let N; : i € NU{0} be as
defined in Definition 3.7. Then, a non-terminal x € N generates a word w € ¥*
ifand only if r € N, for some i € N.

Proof. First, suppose x € N is a non-terminal that generatesaword in X*. Let T
be the corresponding derivation tree, so that all leaves of 7" are non-terminals,
i.e each leaf is in V;. Remove the leaves of T" to obtain a new tree 7". Then, it
is clear by definition that all leaves of 7" are in N;. Continue to do this until the
tree is non-empty. It is then clear that x, which is the root of 7', belongs to NV, for
some: € N,

Conversely, suppose x € N is a non-terminal such that z € NV, for some i € N.
If i = 1, it is clear that = generates a word in ¥*. If i > 1, then we know that
r — « forsome a € (NyU ... U N;_1)* i.e each non-terminal in « belongs to
N;_1. By induction, each non-terminal in o generates a word in X*, and hence «
generates a word in ¥*. This completes the proof. |

Remark 3.8.1. Observe that N; C N, C N3 C ..., i.e this is an increasing chain
of sets. Moreover, it is not hard to see that if N; = N;,; for some i € N, then
N, = N;forall k£ > i. Finally, since |[N| < oo, the largest such i cannot be greater
than |N|. This gives us yet another algorithm to solve the emptiness problem;
L(G) # ¢ ifand only if S € Ny, where S is the starting non-terminal of G, and
N is the set of non-terminals.

3.5. Membership Problem. Here, we explore the following question: given GG
andaword w, isittrue thatw € L(G)? There are two main difficulties while solv-
ing this problem. The first is e-productions. If there is an e-production, then
a derivation can decrease the length of the word, which we don’t want. Sec-
ondly, if there is a production of the form X — Y where X, Y are non-terminals,
then again a derivation involving this production won’t increase the length of
the word. We will see how to remedy these situations. We begin with a simple
definition.

Definition 3.8. Any production of the form X — Y where X,Y € N is called a
unit production.

Theorem 3.9. If L is a CFL then L — {¢} has a CFG without e-productions and
unit productions.

Proof. Let G beagrammarfor L, let G = Gyandlet seti = 0. We do the following
algorithm.

(1) Suppose Y — eand X — oY are productions in G;, where o, 3 € (N U
¥)*, such that X — af is not a production in G;. Then, add a production
X — af in the new grammar G,,;. Itis clear that L(G;) = L(G,41) in this
case. Repeat the same algorithm starting with the grammar G, ;.

(2) Suppose (1) cannot be applied to G;. If there are productions X — Y and
Y — ain G; where o € (N U X)* such that X — «a is not a production in
G, then add the production X — « in a new grammar G,.,. Repeat the
algorithm with G, ;.

(3) Suppose neither (1) nor (2) can be applied to GG;. Then halt the algorithm.

22 SIDDHANT CHAUDHARY

Note that at each step, at most one production is added. Moreover, if j is the
length of the largest RHS of a production in GG, then for any i, the length of the
largest RHS of a production in G; is atmost j (infact equal to j, since the old
productions are retained). Since there are only finitely many productions with
length of the RHS of any production atmost j, the above algorithm halts. Let &
be the index where the algorithm halts, i.e G, is the final grammar with L(G,) =
L(Gy), and observe that G, C G, with respect to production containment.

7 Now, we show that if w # € is derivable in G = Gy, then it is derivable in G
without using any ¢ or unit productions.

First, suppose w is derivable in GG, and suppose some unit production X — Y
was used, where X, Y € N. Since w € X*, some production of the formY — «ais
used. Moreover, by the definition of GG;, we know that X — « is a production in
Gi,and hence in G, the word w can be derived without using the unit production
X — Y. So what we have shown is that the smallest derivation tree of w in G},
does not contain any unit production. Next, suppose w # ¢ is derivable in G.
Also, suppose some c-production of the form Y — ¢ is used in the derivation,
and consider the derivation tree for this derivation. Since w # ¢, Y # S, where
S is the starting non-terminal. Hence, Y has some parent X in the derivation
tree. Suppose, for this parent X, the production X — oY 3 was used. By the
definition of G\, we know that X — afis a production in GG;, and hence w can be
derived in GG, without using the production Y — . Again, we have just shown
that for such w, the smallest derivation tree in GG, is free of any e-productions.
This proves the statement above.

Finally, let G} be the grammar G, with all ¢ and unit productions removed.
So, we have shown above that

L(G) — {e} = L(Gy) — {e} = L(G})
and hence G, is the required grammar for L(G) — {¢}, completing the proof. W

3.6. Chomsky Normal Form (CNF). This turns out to be a very useful form for
CFLs.

Definition 3.9. A grammar G is said to be in Chomsky Normal Form if each pro-
duction is of one of the following forms:

X —=Y”Z
X —a

where X,Y,Z € N and a € X above, and also S — ¢ is allowed if necessary.

Theorem 3.10. Every context-free grammar is equivalent toa grammarin Chom-
sky Normal form.

Proof. Let G be a grammar, and let L(G) be the language of the grammar. By
Theorem 3.9, we know that L(G) — {¢} has a grammar without any ¢ or unit
productions. Let G’ be this grammar. Now, suppose ¥ = {a4, ..., a,, } is the set of
terminals. For each terminal a;, we add a new non-terminal A; to G’ and add the
production A; — a;. In any RHS of any other production in G/, we replace a; by
the non-terminal A;. So now, G’ has the property that if X — « is a production,
then |o| = 1 implies that o € %, and if |a| > 1, then « consists of only non-
terminals. Finally, suppose
X —=>YVY..Y,

THEORY OF COMPUTATION 23

is a production in G’, where Y}, Y5,..,Y, € N are non-terminals. Replace this
production with the following set of productions:

X =Y1K,
K1 — }/éKQ

Ky 2 — Y 1Yy

where K, ..., K;,_, are new non-terminals which have been added to GG’. Finally,
ife € L(G), we add the production S — ¢in G'. So, it follows that G’ is a grammar
for L(G), and clearly G’ is in Chomsky Normal form, completing the proof. B

Remark 3.10.1. The algorithm that we have described above is actually not ef-
ficient, and infact exponential in the worst-case running time. As an example,
suppose we have the following grammar.

X — X1 Xs5... X,
Xi — €

where 1 < i < k. As in Theorem 3.9, we see that we have to add every pro-
duction of the form X — X; .. X; where {ji,...,jn} C {1,...,k}, i.e we have to
add exponentially many productions corresponding to each subset of {1, ..., k}.
However, it turns out that the CNF of a grammar can be obtained in polynomial
time. Infact, if we first introduce new non-terminals so that every RHS of a pro-
duction contains atmost two non-terminals and then proceed as in Theorem
3.9, the algorithm will be much faster.

3.7. Membership Problem Continued. We can use the Chomsky Normal Form
to solve the membership problem in polynomial time. We will now describe an
algorithm for the same.

LetG = (N, X, S, P) be a context free grammar and let w € ¥* be any non-empty
word. Checking whether a context free grammar generates the empty word is
very similar to the emptiness problem, and for more details check problem 4.
of PSET-7.

We can assume that GG is in CNF (and as mentioned in Remark 3.10.1, CNF
can actually be obtained in polynomial time), and we can also assume that the
CNF does not contain any e-production, because we are only interested in non-
empty words. The problem is to determine whether S = w. Throughout the
discussion that follows, we assume that w = a;as...a,, with n > 1 and a; € X for
each i.

Suppose X is a non-terminal, and we want to determine whether X = w. Since
the grammar is in CNF, the algorithm is actually not very hard. If |w| = 1, i.e
w € 3, this is equivalent to checking whether X — w is a production in G, i.e
whether X — w € P. If |w| > 1,then X = wifand only if there are non-terminals
Y,Zsuchthat X - YZ e PandY = ay...a;and Z = a;41...a,, Where 1 < i <n
(notice that i < n, because the CNF cannot produce the empty word). So, we
have the following dynamic programming algorithm.

/*Suppose the non-terminals of G are X_1,...,X_k
and suppose X_1 is the starting non-terminal of G.
*/

/*Let Derives(i , j , k) be 1 if X_i can generate

24 SIDDHANT CHAUDHARY

the word a_ja_{j + 1}...a_k, and let it be O otherwise. So, the
solution to the membership problem is Derives(l , 1 , n).
*/
/*Initialise all Derives(i , j , k) to be 0%/
Derives(i , j , k) =
if (j = k) then
if(X_i -> a_j is a production in G)
Derives(i , j , j) =1
else
for each 1 with j <=1 <k
for each production X_i -> X_pX_q in G
if Derives(p , j , 1) and Derives(q , 1 + 1 , k)
Derives(i , j , k) =1

It is clear that the above dynamic programming algorithm can be implemented
in a bottom-up fashion as well, for more efficiency. Moreover, the table Derives
contains |N| x n? entries, and the algorithm simply fills up these entries bottom
up. From the algorithm, it is clear that the complexity is O(|N| x n? x n x |P|) =
O(|N| x n® x |P]). This algorithm is known as the Cocke-Younger-Kasami(CYK)
algorithm. Using the standard techniques of dynamic programming, if the word
is derivable in the grammar, we can also find a derivation/derivation tree for
the same.

Remark 3.10.2. Observe that, in the above algorithm, if the grammar(in CNF) is
fixed, then the complexity is O(n?).

Remark 3.10.3. The CYK algorithm is not the most efficient algorithm for pars-
ing context free grammars. In fact, for some classes of CFGs, there are linear
time parsing algorithms as well.

3.8. Revisiting A Closure Property. In this section, we will give a construction
to prove the claim in Proposition 3.4.

Proof of Proposition 3.4. Let G = (N, X%, S, P) be a context free grammar ac-
cepting the language L(G), and suppose G is in Chomsky Normal Form. Let R
be a regular language accepted by a DFA A = (Q),%,6,s, F'), so that R = L(A).
We will construct a CFG for L(G) N L(A) as below.

The non-terminals of the new grammar will be of the form X (p,¢q), where
X € N andp,q € Q. Our goal will be to have the non-terminal X (p, q) gener-

ate precisely those words w such that X = winGandp = ¢gin A, i.e
(%) VXeNandp,qgc @, X(p,q) >w +— X Swandp S g
So, we add productions in our new grammar as per the following.
(1) If X - a € Pandifp % ¢ € 6 then add the production X (p,q) — a in the
new grammar.
(2) If X — YZ € P then for every p,q,r € @), add the production X(p,q) —
Y(p,r)Z(r,q) in the new grammar.
(3) Add a start symbol S’ in the new grammar with a production S — S(s, f)
for every f € F,where S is the start non-terminal of G and s is the initial
state of A.
Now, we will prove the claim (x) above, and that will complete the proof of the
theorem. First we show that X (p, ¢) = w implies that X = w and p = ¢, and we

THEORY OF COMPUTATION 25

do so by induction on the size of the derivation. For the base case, the derivation
has size 1, and clearly in that case X (p,q) — w is a production, meaning that
|w| = 1. By the definition of the productions in the new grammar, it is clear that
X - w e Pandp 3 ¢ € 6, and hence the base case is true. For the inductive
case, suppose the length of the derivation X (p,q) = w is n where n > 1, so the
derivation is of the form

X(p,q) =Y (p,m)Z(r,q) 5 wiwe = w

where Y (p,r) = w, and Z(r,q) = w,, and both these derivations have size at-
most n — 1. So by the inductive hypothesis, we know that Y = wy, Z = ws,
p 25 rand r =2 ¢. All of these facts together imply that X = w,w, = w and

p 22275 ¢, and the proof is complete by induction. The converse is also proven
by reversing these arguments, and this completes the proof. |

3.9. Pumping Lemma for CFLs. Now we will prove a useful pumping lemma for
CFLs, which allow us to prove that certain langauges are not CFLs.

Theorem 3.11. Let L be a CFL. Then, there is a number p (called the pumping
length of L), where if wis any word in L such that |w| > p, then w can be written
in the form w = uwvzyz such that the following hold.

(1) w'zy'z € L for each i > 0.
(2) |vy| > 0, i.e atleast one of v or y is not empty.
(3) |vzy| < p.

Proof. Let G be a CFG for L, and let b be the maximum number of symbols (termi-
nals or non-terminals) occuring on the RHS of a productionin G. Without loss of
generality, we can assume that b > 2 (otherwise we can always add a garbage
non-terminal to our grammar). Hence, any derivation tree in GG of height i can
generate a word of length atmost 5", since the maximum number of leaves pos-
sible in a derivation tree of height h is b". Consequently, any word generated by
G of length atleast b" + 1 must have a derivation tree of height atleast h+ 1. This
is a key observation that we are going to use.

Put p = b¥I*1, where | N| is the number of non-terminals in G. By the remarks
in the above paragraph, any word in L of length atleast p must have a derivation
tree of height atleast |N| + 1, since bIVI+1 > IVl 4 1,

Now, let w € L such that |w| > p. Let T' be a derivation tree in G for w with the
minimum number of nodes (we take the minimum number of nodes to guaran-
tee condition (2), as we shall see below f). Clearly, T" has height atleast |N| + 1.
So, there is a path from the root of 7" to a leaf of height atleast | V| + 1, i.e there
are atleast | V| + 2 vertices in this path. The leaf must be a terminal, and hence
the rest of the vertices in this path are non-terminals, and there are |N| + 1
of such vertices. So, by the pigeon-hole principle, atleast one non-terminal R
repeats in this path. The picture of the derivation tree is as follows.

So we can break the word as w = uwvzyz as in the above derivation tree, and
it is clear by cutting and pasting subtrees that uvizy'z € L for each i > 0. This
proves the condition in (1). ¥ Next, we show that |vy| > 0. For the sake of con-
tradiction, suppose |vy| = 0, i.e v = y = . However, by cutting and pasting sub-
trees again, this shows that there is a derivation tree with strictly less number
of nodes than in T that generates the word w, a contradiction. So, |vy| > 0.

26 SIDDHANT CHAUDHARY

u v x Yy 2

Finally, we guarantee condition (3). Take all those paths from the root to
leaves in T" where some non-terminal repeats in the path, and take the path of
maximum length, and hence the length of this path is > |N| 4 1. Choose R to be
among the last |[N| + 1 vertices in this path. Hence, it follows that the maximum
length of vay can be BN+ = p, i.e [vzy| < p, and this completes the proof. |

Example 3.13. Let us revisit Example 3.7, and let us show that the language L =
{a™"c"|n > 0} is not a CFL, and it is quite easy to show this using the pumping
lemma. As a consequence, the language

L'=Aw | [wla = |wly = [w]c}

is not context-free, because if L' was context free, the intersection L'Na*b*c* = L
would be context free by Proposition 3.4, which is a contradiction.

Example 3.14. Let us show that the language
L={a"b"a"b"|n > 0,m > 0}
is not a CFL. To be completed, see lecture 16. Consequently, it follows that if
Ly = {ww | w € {a,b}"}
then L5 is not a CFL, because
L=L;Na*b*a*b*
where we are applying Proposition 3.4 again. This proves the claim in Example
3.8.

3.10. Greibach Normal Form. Thisis another useful normal form that we shall
study.

Definition 3.10. A grammar is in Greibach Normal Form (or GNF) if every pro-
duction is of the form
X — aa

where a € ¥ and a € N*. So, GNF doesn’t contain any ¢ or unit production.
Before proving the existence of GNFs for languages, we introduce a new notion.

Definition 3.11. Let G be a CFG, and let the non-terminals of G be listed as
X4,...,X,. Then, GG is said to be ordered if all productions are of the form

XZ'—>AOé

wherea € (NUX)*and A € YU {X,,1,..., Xx}. In simple words, any production
begins with a terminal or a non-terminal with a higher index.

THEORY OF COMPUTATION 27

Proposition 3.12. Any ordered CFG GG has a GNF.

Proof. The idea here is very similar to the Gaussian Elimination method of solv-
ing linear equations. Suppose the grammar G is ordered as X, ..., X;. Then
by the definition of an ordered grammar, every production of X; must begin
with a terminal. Now, look at all the productions of X;,_;. Since G is ordered, all
productions must begin with either a symbol in X or the non-terminal X, i.e all
productions of X;,_; are of the form

Xi_1 v acor X, — X«

where a € (N U X)* and a € X. Suppose a production of the form X, ; — X«

exists, and let X;, — 5, | f2... | B, are all the productions of X;. Then, replace
the production X;_; — X,a by the productions
X1 — BlOé ‘ | BmOé

(and the new grammar with these productions continues to accept the same
language). So, all productions of X;,_; and X, now begin with a terminal. In-
ductively, we can repeat the same procedure with the productions of the non-
terminals X;,_,, ..., X; and hence we obtain a grammar where all productions of
every non-terminal begins with a terminal.

Finally, to obtain GNF, consider a production X; — sa with s € 3. If & contains
any terminals, we can replace them by appropriate non-terminals. This will
give us the GNF. |

Theorem 3.13. If L is a CFL then L — {¢} has a grammar in GNF.

Proof. Let G = (N, X%, P, X;) be a grammar in CNF for L. — {¢} without any ¢ or
unit productions (possible by Theorem 3.10). By Proposition 3.12, it is enough
to convert GG to an equivalent ordered grammar. Suppose the non-terminals
of G are X, ..., X;, where X is the starting non-terminal. Let us add new non-
terminals X_;, X _;,1,..., X_; to the grammar, and these non-terminals have no
productions so far. We will see that in the end, the grammar that we obtain will
be ordered with the ordering

X gy X0, X0, X

Starting with i = 1, we perform the following algorithm.

(1) Consider all the productions of X;. If X; — A« is a production, then
Ae XU{Xy, .., Xi}. Nowif A € YU {X;,1,..., Xy}, then in the ordered
grammar, these productions are allowed. However, if A € {X,..., X;}
then these productions cannot be allowed in the ordered grammar. If
i > 1, then starting from j = 1 all the way to j = i — 1, do the following
(inductively we assume that all productions of X; satisfy the conditions
of an ordered grammar):

(@) Let X; — B1 | ... | B beall the productions of X.
(b) If X; — X« is a production, then replace this production by the fol-
lowing productions

Xi—>5101 | ’ /Bmoz

(and again, the modified grammar accepts the same language). This
step ensures that all the RHS of productions of X; now start with a
symbol in X U {X; 4, ..., Xx}.

28 SIDDHANT CHAUDHARY

(¢) Putj =5+ 1. Go to step (a).
After doing these steps, each RHS of a production of X; now begins with
asymbolin X U {X;, ..., X;}. The job is still not done, as we don’t want X;
to be in this list. We handle this in step (2).

(2) This step is called left-recursion elimination. After step (1), let all the
productions of X; be of the following forms:

(>l<>l<>l<) XZ‘—)XZ'OQ | XZ'OQ | | Xiam
Xi=bB| .. | B

where each j; begins with a symbol in 2U{X,,, ..., X;}. In simple words,
the first set of productions are what we want to eliminate, and the sec-
ond set of productions are what are acceptable in the ordered grammar.
Using derivation trees, we see that

X S5 aX, S w
iff
* * *
X — OZXZB — OéﬁjaijOéij_l...Oéilﬁ — W

where §; € {51,..., 4} and o, ..., 5, € {a1,...,an}. So, the non-terminal
X, is always used to derive a word in

B+ ...+ B) (a1 + ... +ap)”

within any derivation. Here is another way of generating the same words
without the productions in (x xx): replace all those productions with the
following set of productions.

Xi = X | Bo Xy | o | BiX
X,Z'—>061X,i ‘ OéQX,i | ’ OémX,Z' ’ €

Then, all productions of X; now begin with a symbol in X U {X,,4,..., Xx}.
Moreover, observe that a; # € forany 1 < j < m (as the original gram-
mar G does not contain any unit productions), hence no unit productions
are introduced. Also, the productions involving X _; also satisfy the or-
dered grammar conditions.

(3) Puti =17+ 1 and continue with step (1) if i + 1 < k. Otherwise halt.

After doing all these steps, we obtain an ordered grammar with some e-productions.
Observe that the only non-terminals which can have e-productions belong to the
set {X_1,..., X _x}. So, as in Proposition 3.12, we can convert this grammar to
GNF even though there are e-productions. Finally, eliminate the e-productions,
and the resultant grammar will still be in GNF. This completes the proof. |

Proof 2 of Theorem 3.13. There is another proof of the existence of GNFs. See
lecture 17 from the 50:00 mark and from the beginning of Lecture 18 to its
30:00 mark. This proof is apparently in Kozen’s book. |

3.11. Push-Down Automatons. Inthis section, we willintroduce machines which
recognize context-free languages. These are the so called pushdown automata.
Intuitively, a pushdown automaton is like an NFA which has memory, and the
memory storage is in the form of a stack. The automaton, by reading letters
or ¢, can move to a different state, and can replace the top of a stack by a new

THEORY OF COMPUTATION 29

word (note that in a stack, we can only access its top). We formalize this notion
below.

Definition 3.12. Apushdown automatonor PDAisatuple (Q,X,T',4,s, L, F')where
the meanings of the symbols are as follows.

(1) Q is the set of states of the PDA.

1 is the initial stack symbol.

J is the set of transitions,i.e § C (Q x X U{e} xI') x (@ xI'*)anddisa
finite subset. More precisely, any transition is of the form (¢,v) = (¢, w),
which means that if the current state of the PDA is ¢ and the top stack
symbol is v, then by reading a (where a € ¥ U {¢}), we go to state ¢’ and
replace the top of the stack by the word w.

(2)
(3)
(4)
(5) I' is the stack alphabet.
(6)
(7)

Remark 3.13.1. Note that by this definition, PDAs are non-deterministic ma-
chines. This is because ¢ is defined to be an arbitrary subset of the set (Q x XU
{e} xI') x (Q x I'*) and it does not have to be a function. Moreover, PDAs are
allowed to non-deterministically switch states without reading any letter.

Remark 3.13.2. Another point to be noted is that if the stack becomes empty,
the automaton has to stop the computation. This is inherent in our definition of
0.

Definition 3.13. A pair (¢,v) where ¢ € @ and v € I'* is called a configuration
of the PDA. Given configurations (¢;,7v:) and (¢, v.) and a word w = a;...a;, we
write

(q17 71) i} (qTH r)/n)
and call this a run if there is a sequence of transitions

((117%) = (QQ,%) 2 (Qna%)

and note that in any transition, only the first letter of +; is used in a transition
(i.e only the top of the stack is removed). The configuration (s, L) is called the
initial configuration of the PDA, and a configuration of the form (¢,) withg € F
and v € I'* is called an accepting configuration.

Definition 3.14. A word w is accepted in the PDA if there is a run
(s,L) = (¢,7)
for some accepting configuration (¢,). If A is a PDA, we define
L(A) :=={w | w has an accepting run in A}

Remark 3.13.3. Observe that, the only rule to accept a word is that it must end
up in a final state, and we don’t care about what is going on in the stack.

Remark 3.13.4. Note that every PDA is equivalent to one which has only one
final state. This can be easily done as follows: if A is a PDA, add a new state ¢
to A. Then, from every final state ¢, in A, add an e-transition from g to the new
state ¢t (no matter what the top of the stack is), and in this new PDA, make ¢ the
only final state.

30 SIDDHANT CHAUDHARY

Remark 3.13.5. We can arrange our PDA so that reaching the final state also
empties the stack. This is again easy, and is very similar to the construction in
the previous remark; we add a new state ¢t which will be our only final state, and
we can ensure that ¢, if reached, can also empty the stack. This isaccomplished
by just adding transitions from ¢t to itself which pops the stack.

3.12. ClosureProperties of PDAs. Asusual, we will review some closure prop-
erties that PDAs have.

PropOSition 3.14. Let Al = <Q17 E, Fl; (517 S1, J—l; Fl) Clnd AQ = (QQ, E, FQ, (52, S, J_Q
, F5) be two PDAs, and without loss of generality suppose all components of
these PDAs are pairwise disjoint (except). Then the following hold.

(1) L(A;) U L(As) is recognized by some PDA.

Proof. In each case we shall give a construction of a PDA.

(1) We will construct a new PDA A as follows. We add a new start state s to
the PDA and add a new stack symbol L to the PDA. So,

A=(QUQU{s}, B, T Ul U{Ll},d,s L, F1UF)
and the set of transitions ¢ is simply
0= (51 U 52 U {(8, J.) é (81, J_1>, (S, J.) é (82, J_Q)}

and itis clear that the new PDA A will accept the language L(A;) U L(A,).
|

Proposition 3.15. Suppose L is a language over Y. recognized by some PDA
A, and suppose h : A* — ¥* is a homomorphism. Then, h='(L) C A* is also
recognized by some PDA. In particular, this proves Theorem 3.6, as we will
show ahead that CFLs are equivalent to PDAs.

Proof. Let A = (Q,%,T,0,s, L, F) be a PDA recognizing L. We will make a new
PDA A;-: as follows. Let Suffixes(h(A)) denote the set of all suffixes of words in
h(A). Let the PDA A;,-: be as follows.

Ap-1 = (Q x Suffixes(h(A)), A, T, 61, (s,€), L, F x {e})
Now, we come to the transitions in d;. First, let all transitions of the form

(g,), X) = ((a.h(a)), X)

be added to A,-: (and these transitions just mean that if we read a symbol a € A,
we will stimulate the old PDA A on the word h(a) € ©*). Now, suppose (¢, X) =
(¢',v) is atransition in A. Then for any x € ¥* such that cz € Suffixes(h(A)), add
the transition

((q,c2), X) = ((¢',2),7)
to the PDA A, -: (and these transitions juts mean how we are stimulating the old

PDA A). Hence, the PDA A, -1 accepts the language ~!(L), completing the proof
(A lot of details are missing, but they are relatively easy to prove). |

Remark 3.15.1. The above proof may be hard to understand, but the idea is
very simple. If we have a word «a;...a; € A*, to see whether it belongs to h=1(L),
we just have to stimulate the old PDA on the word h(a,)...h(a;). This is exactly
what we are doing above.

THEORY OF COMPUTATION 31

3.13. Another Mode of Acceptance. Observe that by our definition, a word is
accepted in a PDA if the word reaches a final state via some run. However, we
also have the power of a stack with us, and we can ask the following question:
suppose we change the definition of acceptance to that wherein a word is ac-
cepted if it empties the stack. Then s this notion stronger/weaker or equivalent
to our old definition of acceptance?

Definition 3.15. Let A be any PDA, and define the language
N(A) :={w | (s, L) = (g,¢) for some q € Q}
and this is the new idea of acceptance that we mentioned in the above para-
graph.
For this section, we will give another definition.
Definition 3.16. Let A = (Q,X,I',0,s, L, F') be a PDA. Define a new PDA A’ as
A'=(QuU{t}, X, T,d, s, L, {t})
with
S =6U{(f,X) St X)|feF,XeT}U{(t,X)> (t,e)VX €T}
Then it is easily seen that .(A) = L(A’), and a word w is accepted in A’ if and

only if (s, L) = (t,¢) in A, i.e if and only if w empties that stack and reaches the
final state ¢t (see Remark 3.13.5).

Proposition 3.16. Let A be any PDA, and let A’ be constructed as in Definition
3.16. Then L(A") C N(A").

Proof. This easily follows from the comments in Definition 3.16, because a word
w is accepted in A’ if and only if it empties the stack. |

Remark 3.16.1. This inclusion is not true in general.

Proposition 3.17. Let A be any PDA, and let A’ be constructed as in Definition
3.16. Suppose A never empties its stack. Then N(A’) C L(A’), and from Propo-
sition 3.16 we get that

L(A") = N(A)

Proof. Suppose w € N(A’), and hence we know that (s, L) = (q,¢) for some
state ¢ in A'. If ¢ # t, then this run is also a run in A (by the construction of A’).
However, this is a contradiction since A never empties its stack. So, ¢ = t and
hence w € L(A’), showing that N(A") C L(A’). [

Proposition 3.18. Let A be any PDA. Then, A is equivalent to a PDA which never
empties its stack.

Proof. Let A = (Q,%,T',4,s, L, F') be a PDA. We make a new PDA A* as follows.
Let

A* = (Q U {Sl}, Z, r U {J_l}, 5/, S1, _]_1, F)
where the transitions are given by

& =0U{(s1,L1) = (s,LL1)}

Intuitively, what we have done is just adding a new start state and a new ini-
tial stack symbol 1, and we have ensured that even if the old PDA empties the
stack, the new PDA cannot get rid of the new initial stack symbol 1; at all. It is
clear that L(A*) = L(A), and hence we are done. |

32 SIDDHANT CHAUDHARY

Through the above propositions, we have proven the following important fact.

Proposition 3.19. Suppose L is accepted by some PDA A, i.e L. = L(A) for some
PDA A. Then it is accepted via empty stack by some PDA A”, i.e

L=N(A")
for some PDA A”.

Proof. Let A be a PDA and let L. = L(A). Construct a PDA A* as in Proposition
3.18,i.e

L=L(A)= L(A")
where A* is a PDA that does not empty its stack. Then, construct a PDA (A*)" as
in Definition 3.16. By Proposition 3.17, we know that

L((A")") = N((A7))
and as in Definition 3.16 we know that

L(A") = L((A"))
and so
L = L(A) = L(A") = L((A")) = N((47))

and the claim follows by putting A” = (A*)'. |

We can also prove a converse to Proposition 3.19 and we do so now.

Proposition 3.20. Suppose L. = N(A) for some PDA A. Then, there is some PDA
A" such that L = L(A”).

Proof. This construction is very similar to what we have been doing above. Let
A=(Q,%,T,0,s,1,F)beaPDAsuchthat L = N(A). We construct A” as follows.
Put

A” = (Q U {81} U {t}, E, ru {J_l}, 5”, S1, J_l, {t})
and let
" =8U{(s1,L1) = (s, LL)}U{(q, L)) = (t,€)Vq € Q}

Intuitively, we are adding a new start state and initial stack symbol | to ensure
that the new PDA never empties its stack. Moreover, if we reach a state of the
form (¢, L,) in the new PDA, then it means that the old PDA has emptied its stack,
so we can jump directly to the new final state ¢. It is clear that N(A) = L(A"),
and hence this completes the proof. |

Remark 3.20.1. Infact above, we have the equality N(A) = L(A”) = N(A”), but
this is unnecessary.

So via Proposition 3.19 and Proposition 3.20, we have proven that:

acceptance via final states
= acceptance via empty stack
(= acceptance that demands both)

and this is very convenient, since we can either work with an empty stack or
final states.

THEORY OF COMPUTATION 33

3.14. CFLs and PDAs. Let us now look at the relationship between PDAs and
CFLs.

Proposition 3.21. Let G be a CFG. Then there is a PDA A such that L(G) = N(A),
i.e L(G) is accepted by a PDA via the empty stack.

Proof. The idea is simply to stimulate the CFG using a stack. Let G = (N, %, P, S)
be a CFG. We construct a PDA A as follows. Let

A=({¢},5, T =NUX,d,q, L= S, 9)

(note that there is no final state, since we will be accepting words via empty
stack). The set of transitions § will be as described below.

(1) For every production X — «in G let (¢, X) = (¢, «) be a transition in A.
(2) For every a € %, add the transition (¢, a) = (g, ¢) in A.
We claim that N(A) = L(G). We will do this in two steps.

(1) We first show that N(A) C L(G). To prove this, we prove a stronger
statement: if (¢,S) = (g,7) is a runin A, then S = wy is a left-most
derivation in G, and we prove this by induction on the length of the run.
For the base case, the length of the run is zero, i.e w = ¢ and the run is
simply (¢,5) = (¢, S). Evidently, S = wS = S is a left-most derivation
in GG, and hence the base case is true. For the inductive case, suppose
the run (¢,5) = (¢,7) has length n + 1 for some n > 0, and suppose
the claim holds true for all runs of length n. So the run can be written
as (¢,9) = (¢, X7) = (¢,7) where w = wywy, X € I'and (¢,5) =%
(¢, Xv) is a run of length n in A and (¢, Xv1) > (g,7) is a transition in
A. By the inductive hypothesis, we see that S = w; X~ is a left-most
derivation in G. Now two cases are possible. First, X € N (i.e X is a
non-terminal). In this case, we must have w, = ¢ (and so w; = w) and
there is some production X — « such that v = av,. So, we have a left
most derivation S = w1 Xy — wiay; = wy. In the second case, X € %,
i.e X is aterminal. In that case, we have w, = X, and v, = . So, we have
a left-most derivation S = w;Xv; = wy. So by induction, the statement
holds for all runs, and the proof is complete.

(2) Next we show that L(G) C N(A). To prove this, we will show that if S =
wryis aleft-most derivationin G (w € ¥*and~y € (NUX)*) such that v does
not begin with a terminal, then there is a run (¢, S) = (¢,) in the PDA A,
and we will do this by induction on the length of the derivation S = w~.
For the base case, suppose the derivation length is 0, so that w = ¢ and
v = S, and clearly there is a run (¢,S) = (¢, S), and so the base case
is true. Now suppose S = wr is a left-most derivation of length n + 1
such that v does not start with a terminal, and suppose the statement
holds true for all derivations of length atmost n. Since we are dealing
with left-most derivations, we can write this derivation as

S5 w1 X7 Koo, wiy; = Wy

where X — ais a productionin G, w; € ¥* and a,y; € (N U X)*. Now we
can write

ay =y

34 SIDDHANT CHAUDHARY

where z € ¥* and v/ does not begin with a terminal. So it is clear that
w = wix and v = ~/. By inductive hypothesis, we have a run

(¢,5) = (¢, Xn)
and we can extend this run as
(¢,9) =5 (¢, Xm) = (q,0m) = (¢,27) = (¢,7) = (¢.7)

and hence we have a run (¢, 5S) = (¢,7). So by induction, the statement
has been proven. Now if S = w is a derivation, it is clear that (¢, S) =
(g,¢€) is a derivation in A, proving that L(G) C N(A).
By (1) and (2), it follows that A is a PDA accepting L(G) via the empty stack. Since
acceptance via empty stack is the same as acceptance via final states, it follows
that L(G) is accepted by some PDA. |

Next, we will see how to convert a PDA to a CFG.

Proposition 3.22. If L = N(A) for some PDA A, then there is a CFG G such that
L = L(G). So, if a language is accepted by a PDA via the empty stack, then it is
a CFL.

Proof. Let A = (Q,%,T,4,s, L,¢) be a PDA with L = N(A). For any p,q € @ and
X eI, put
L(p, X,q) = {w e =" | (p, X) = (¢,¢)}
i.e L(p, X, q) is the set of all those words which can take state p to ¢ when the
stack contains only X and which empties the stack. An immediate observation
from this is that for any v € I'"* and any w € L(p, X, q), we have
(p, X7) = (¢:7)
and this is a simple fact that we will make use of. It is clear that
(%) UL, Lo =NA) =L
q€Q
Our strategy will be to use non-terminals of the form ?.X? in a grammar G such
that
{w | PX1 S owin G} = L(p,X,q)
So let GG be a context-free grammar given by
G={"X"]pqeQ,XeT}US X PS)

where S will be the start symbol of our grammar G. Keeping in mind what ? X
should do, the productions are as follows: first, add the productions

{§ =°1%: qge @}
Then if (p, X) = (g, €) is a transition in A (c € ¥ U {¢}), add the production
PXT— ¢

to the grammar G. Next, suppose (p, X) = (p/, X1 X,...X},) is a transition in A.
Forall ¢, ...,q.—1 In), add the production

/
PXT s VXWX e X

to the grammar G.

THEORY OF COMPUTATION 35

Now, let L (?X9) be defined as

Lo(PX) :={w e ¥ | PX? 5 win G}

We will now prove that

La(PX?) = L(p, X, q)

as we mentioned earlier. We will do this in two steps.

(1)

(p, X) =

(2)

(p, X) =

First, we show that Ls(*X?) C L(p, X, q), and we prove this by induction
on the length of the derivation of a word. So, let w € Lg(?X?). For the
base case, suppose the length of the derivation ?X9 = w is 1. Then it
must be that w € X and the derivation is P.X¢ — w, which is simply a
production. It then follows that (p, X) = (g, ¢) is a transition in A4, and
hence w € L(p, X, q), proving the base case. Now, suppose the derivation
»X7 5 win G has length n+1 for some n > 1, and suppose the statement
is true for all derivations of length atmost n. By the nature of productions
in G, the derivation must be of the form

/ *
PXT— ¢ P X BXP X = cwyowy = w

where w; € Lg(P X{) and w; € Lg(%1X%) for each 2 < i < k, where
qr = q. By the inductive hypothesis, it follows that w; € L(p’, X1,¢;) and
w; € L(qi—1, X5, q;) foreach 2 < i < k(again ¢, = ¢). Using thisinformation,
we can make a run (p, X) = (g, ¢) easily, and the run is given below.

(p/7X1X2 Xk) (Q1,X2 Xk) (Q27X3 Xk) L % (Qk—lan) Loy

and hence this shows that w € L(p, X, q). This completes the proof by
induction, and shows that Lo (?X?) C L(p, X, q).

Next we prove the reverse inclusion, i.e L(p, X,q) C Lg(?PX?). Let w €
L(p, X, q), i.e there is a run (p, X) = (g,¢). We will prove the claim by
induction on the length of the run. For the base case, suppose the length
of the run is 1. In that case, (p, X) = (¢, ¢€) is a transition in A (and w €
¥ U {e}). By definition of G, it follows that ?.X? — w is a production in G,
and hence w € Lg(PX1?), and so the base case is true. For the inductive
case, suppose the length of the runis n + 1 for some n > 1, and suppose
the statement is true for all runs of length atmost n. Suppose the first
step in the run is as follows.

(an) i> (p/7X1 Xk) (Q7)
where ¢ € ¥ U {¢} and w = cw’. Observe that £ > 1, because the run
(', X1..X%) i (¢,€) has length n > 1. We observe the following: after
reading c, our stack contains k symbols. For the stack to become empty,
it must reach height i for every 1 < i < k at some point in the run. So, let

q1 be the first state at which the stack height becomes k& — 1, i.e let ¢; be
the first state for which the run is of the form

(pv)()i> (plaXl Xk?) (C]1,X2 Xk) (Q>)

where w = cw;w”. We then observe that w, € L(p/, X1, ¢:) (and this is why
we chose the first such state). Continuing this further, we can break
down this run as

(P/>X1 Xk) (C]1,X2 Xk) -2 (Q2>X3 Xk)—> u(% 1an) (CL)

36 SIDDHANT CHAUDHARY

such that w = cw,w,y..w;_;w;, and
wy € L(p/7X17QI)
wa € L(q1, X2, q2)

We—1 € L(qr—2, Xg—1,qk-1)
wy, € L(qe-1, Xk, q)

By inductive hypothesis, we see that w, € Lo(®' X{),...,wy € La(®#-1X7).
So, we see that the derivation

PXT 5 eV XI XP 1 X5 cwywy, = w
is a valid derivation in G, and this shows that L(p, X, q) C L (P X9).

So by (1) and (2), we have shown that L (? X9) = L(p, X, ¢). So by (), we see that
L(G) = N(A) = L, and this completes the proof. |

So we have proved the following powerful theorem.

Theorem 3.23. The class of context-free languages and languages recognized
by PDAs are the same.

Proof. By Proposition 3.21, any CFL is recognized by some PDA via the empty
stack, i.e every CFL is recognized by some PDA. Conversely, given a PDA, there
is an equivalent PDA having the same language which accepts the language via
the empty stack. By Proposition 3.22, this PDA can be converted to a CFG. This
proves the theorem. [|

3.15. Deterministic PDAs. In this section, we will try to formulate the notion of
determinism in PDAs. It turns out that PDAs without e-transitions are too weak.
So, we will have to formulate determinism in the presence of PDAs. Informally,
this is done as follows.
(1) If a state p has an ¢ transition of the form (p, X) = (¢,Y), then there
cannot be any other transition coming out of (p, X).
(2) If there is no e-transition coming out of (p, X), then for every a € %, there
must be a transition labelled « coming out of (p, X).

The above two conditions guarantee that any word will have a unique runin the
deterministic PDA (however, it does not mean that all words will have a run).
Also, in the case of PDAs, we had the power of guessing. In deterministic PDAs,
we won't have this power anymore, and to remedy this we introduce a new
symbol called the right endmarker, which acts as a delimiter denoting the end
of string in an input. This is made more precise in the following definition.

Definition 3.17. A Deterministic Pushdown Automaton (DPDA) A is an octuple
A=(Q,%,T1,0,1,8,s,F)
where all symbols have the same meaning as in PDAs, and the following hold.
(1) $is a new symbol called the right endmarker, and
dC(@xXZU{S, e} xT) x(QxT7)

and ofcourse § is a finite set.
(2) A is deterministic in the following sense: for every p € Q and X € T,
exactly one of two statements below is true.

THEORY OF COMPUTATION 37

(a) The only transition emerging from (p, X) is an e-transition (p, X) -
(¢,Y)(whereq € Q,Y € I'*),and there is exactly one such e-transition.
(b) There is no e-transition emerging from (p, X), and for every symbol
c € Y U {$}, there is exactly one transition (p, X) = (¢,Y), where
geQandyY €I,
We define

L(A) :={we X" | Jq; € F,y €I such that (s, 1) LN (gr,7) }

So in simpler words, w is accepted if and only if w$ has an accepting run in the
DPDA A. Any language accepted by some DPDA is called a Deterministic Context
Free Language (DCFL).

Remark 3.23.1. By our definition, it follows that every regular language is ac-
tually a DCFL. To see this, we can look at a DFA for a regular language as a DPDA
that does not use its stack at all.

3.16. Closure of DCFLs under Complementation. The main goal of this section
will be to prove the closure of DCFLs under complementation (Unfortunately I
don’t have time to finish this section right now. In any case, most of the argu-
ments done in class were taken from Kozen’s book. So it is enough to look at
that).

3.17. Parikh’s Theorem. In this section, we will prove an important theorem,
which will roughly mean that if we only focus on lengths of words, then there is
no difference between regular languages and CFLs.

Definition 3.18. Let N be the set of natural numbers including 0. Let £ > 1 be an
integer, and consider the space N*. A set S C N¥ is called a linear set if there
are vectors b, vy, vs, ..., v, € N¥ such that

S=b+4+ (v1,...,0n) ={b+crv1 + ... + v, | ¢; > 0,¢; € N}
A subset of N* is said to be semi-linear if it is a finite union of linear subsets of
NF,
Definition 3.19. Let ¥ = {ay,...,a;} for some k£ > 1. Define the Parikh function
U:¥* - Nas

\Il(w) = (|w|a17 s |w|ak)

where |w|,, refers to the number of as in w.
Example 3.15. Let ¥ = {a,b}, and let Lgp be the language of all even length
palindromes over X. In any such palindrome, the number of «’s and the number
of i’'s must be even, and conversely, given an even number of ¢’s and t's, we can

construct an even length palindrome containing that number of ¢'s and ¥’s. In
that case, we see that

W(Lep) = {(24,24) | 4,5 > 0}
and so
III(LEP) = (07 0) + <(27 0)7 (Ov 2))

which means that ¥(Lgp) is a semi-linear (infact linear) subset of N2, Now, let
Lp be the set of all palindromes over . It can be easily seen that

U(Lp) = (0,0) +((2,0),(0,2)) U (1,0) +((2,0), (0,2)) U (0,1) + ((2,0), (0,2))
and hence in this case too, ¥(Lp) is a semi-linear (but not linear) subset of N2,

38 SIDDHANT CHAUDHARY

Theorem 3.24 (Parikh’s Theorem). If L is a CFL over ¥ = {ay, ..., ax}, then V(L)
is a semi-linear subset of N,

Before proving the theorem, I will justify the remarks made near the beginning
of this section.

Theorem 3.25. Let S be any semi-linear subset of N*. Then, there is a regular
language R over ¥ = {ay,...,a;} such that ¥(R) = S, where V is the Parikh
function.

Proof. First, let us show that any linear subset of N* is the Parikh image of some
regular language. Let the linear subset be given by

S=0b+ (v1,...,)

Take words w, wy, ..., w, € ¥* such that U(w) = band ¥(w;) = v; foreach1 <i <
n. Then, consider the language

L=w(w + ...+ w,)"
and it is clear that
U(L)=S

Now, suppose S is a semi-linear set, i.e a finite union of linear subsets of N¥.
Corresponding to each linear set, pick a regular language, and take the union
of those regular languages. Since regular languages are closed under (finite)
union, the claim follows and hence the proof is complete. |

Example 3.16. Consider the language L = {a"b"c¢" | n > 0}, and it is easy to see
that this is not a CFL by the pumping lemma. However, we have

V(L) =(0,0,0)+ ((1,1,1))

sothat U(L)isasemi-linear subset of N*, This example shows that the converse
of Parikh’s Theorem 3.24 is not true.

In the proof of Parikh’s Theorem, we will need some terminology which is given
below.

Definition 3.20. Let G be any CFG. Then define
T:(G) :={T | T is a derivation tree in which all non-terminals of G appear}
Also, define
Ly(G) = {y(T) | T € T;(G)}

and the small f usually stands for full, where for any derivation tree T in G, we
define

y(T) := string derived by T

The letter y usually stands for yield. Finally, for any derivation tree T'in GG, define
its Parikh image as

U(T) == W(y(T))
and for any collection B of derivation trees of G, define
U(B):={¥(T) | T € B}

THEORY OF COMPUTATION 39

A A
A A
x Yy z X ya

Figure 1. Tree T on the left, and its corresponding pump on the
right. The subtree ¢t generates the word y.

Definition 3.21. Let G be any CFG, and let A € N be any non-terminal. Let T be
a derivation tree in G with root A such that 7' contains a non-root node labelled
A. Let t be the subtree rooted at the non-root node labelled A. Then the tree
T —tU{A} is called a pump (where T' — t U { A} is the tree T with the subtree ¢
removed but the root of ¢ kept. See the diagram below). For any such pump p,
we define its Parikh image denoted by ¥(p) as

W(p) = W(x2)
and for any collection P of pumps, define
U(P):={¥(p)|per}

Remark 3.25.1. While proving the pumping lemma for CFLs (Theorem 3.11), we
used pumps, but didn’t define them explicitly.

Proof of Parikh’s Theorem 3.24. Let G = (N, %, P, S) be a CFG for L. We imme-
diately see that

L =L(G)
Clearly, we have that L;(G) C L(G). In most cases, this inclusion will be strict.
However, we now show that
L(G) = Lf(Gl) U...u Lf(Gk)

for a finite collection (G4, .., G, of CFGs. And this is pretty easy. Corresponding
to every subset X C N that contains the starting non-terminal S, consider the
CFG Gx, where the productions in Gx are all those productions in G which only
involve non-terminals in the set X. So, we see that

LG = J LiGx)

XCN,Sex

{y(T) | T is a derivation tree}

and clearly this union is finite since there are finitely many such sets X. So, itis
enough to prove that U(L;(G)) is a semi-linear subset of N* for every grammar
G, because a finite union of semi-linear subsets of N* is a semi-linear subset.
Now, put

B = {T € T¢(G) | No path from the root to a leaf has more than | V|
occurrences of a non-terminal }

40 SIDDHANT CHAUDHARY

Clearly, we see that B is a finite set of trees, because the height of any tree in
B is bounded above by |N|?. Now put

P = {all pumps in G in which no path from the root to a leaf
has more than |N| occurrences of any non-terminal.}

Again, P is a finite set because the height of any tree in P is bounded above by
|N|*. Now, we will define a family of trees 7; which is closed under inserting
pumps in P as follows: Put
T, =B
Then, for any i € N, inductively define
T = T_, Upump(T.,)

where pump(7;,) is defined for every i € N as follows: for any tree in 7/,
pick an internal node s, and pick any pump in P with root equal to the label of s,
and insert the pump at the internal node. The collection of all trees that can be
obtained in this way is precisely pump(7; ;). Then, we define

=T
n>0

so that 7; is the smallest set containing B that is closed under inserting pumps

at internal nodes.

We now claim that

() U(Ty) = ¥(B) + (¥ (P))
where

TeB

(and remember that ¥(P) is a finite set, since P is finite). Proof of (x) to be com-
pleted, but it is not difficult. So, (x) shows that ¥(7;) is a semi-linear subset of
N*, since B and P are both finite sets.
Now we easily see that 7/ C 7;. So to complete the proof, we will show that for
any tree T' € T; thereis atree 7" € T; such that ¥(T') = ¥(7”), and it will follow
that

U(Ty) = ¥(Ty)
which will complete the proof. We will prove this by contradiction. So suppose
there is some 7" € T; such that U(T") # U(T") for any 7" € T/, and take the
minimal such tree. Observe that T' € B is not possible, since B C 7}’ Hence T
has a path from the root to a leaf such that some non-terminal occurs atleast
|IN| + 1 times on that path. Now, look at the smallest subtree of 7" which also
contains some non-terminal which occurs atleast |N| 4 1 times on a path from
the root to a leaf in the subtree. Suppose X is the root of this subtree. So this
subtree will contain the non-terminal X exactly |N| 4 1 times on a path from
the root to a leaf, and every other non-terminal Y will appear no more than |N|
times on a path from the root to a leaf in this subtree.
Now look at this subtree as a sequence of | V| pumps, say p1, ..., p v}, and the root
of each pump is X. Notice that each of these pumps belong to P, because each
of these pumps contains atmost |N| X’s on a path from the root to a leaf, and
every other non-terminal appears atmost | V| times on a path from the root to
a leaf in the pump. Also, notice that removing any of these pumps from 7" will

THEORY OF COMPUTATION 41

still give us a smaller derivation tree that contains the non-terminal X (because
deleting any pump p; will not remove the last occurrence of X along the path in
the subtree which contained |N| + 1 X’s). Now here is the key point: because
there are | V| pumps and |[N|—1 non-terminals other than X, there is atleast one
pump p; whose deletion will not delete the |N| — 1 non-terminals other than X
(convince yourself that this is true), i.e there is some pump p; such that 7' — p, €
T;. Since T' — p; is smaller than T, by the minimality of T' it follows that

(T — pi) = W(T")

for some 7" € 7;. Since 7; was closed under inserting pumps at internal nodes,
it follows that

U(T) = V(1" ®p)
where 1" ® p; denoted inserting the pump p; at an internal node of 77, and we
know that 7" & p; € T;. However, this contradicts our assumption about 7', and
completes the proof. |

4. Turing Machines and Computability

In the final part of this course, we will be dealing with the most powerful com-
putational tool among the ones which we will see, which are called Turing Ma-
chines. First, let me describe the informal working of a Turing Machine. We
have an infinite one-dimensional tape consisting of cells on which symbols are
written. This can be thought of as a very general version of a PDA. There is a
pointer, which points at the cell which the tape is currently at. There are states
as in usual automatons, and there are transitions which can change the state
of the machine, the symbol of the current cell and which can move the pointer
left or right. We now make this formal.

Definition 4.1. A Deterministic Turing Machine (TM) is a 9-tuple
M= (Q,%,T,6,s Ut r)
where the symbols have the following meanings.

(1) Q is a (finite) set of states of M.

(2) X is a (finite) input alphabet.

(3) I'is a (finite) set called the tape alphabet. We have X C I', and I" contains
two special symbols: -, which is called the left-end marker and L, which
is called the blank symbol. Informally, the leftmost cell of the infinite tape
will always contain the symbol i-. Note that I' may contain other symbols
apart from these, i.e X U {1} CT.

s is the starting state of M.

t is the accepting state of M.

r is the rejecting state of M.

0 is a (finite) set of transitions in M, which we will now describe. ¢ is a
functiond : Q xT' — @ x I' x {L, R}. So, any transition is of the form
(¢, X) — (¢,Y,Z), where q,¢ € Q, X,Y € I"and Z € {L,R}, and this
transition simply means that the machine M goes from state ¢ to ¢/, the
symbol at the current cell of the tape is changed from X to Y, and the
head of the tape either moves left or right depending upon whether Z
is L or R. Since we are dealing with deterministic machines first, ¢§ is
actually a function and not just a relation.

(4
(5
(6
(7

~— — — S

42 SIDDHANT CHAUDHARY

Moreover, we also require that the left-most cell of the tape always contains
the symbol I, and that the head of the tape never goes to the left of the left-most
cell. In other words, for every state ¢ € Q, if (¢,F) — (p, ¢, X) is a transition, then
¢ =Fand X = R, and this can be written as

6(q;F) = (p,F, R)
Definition 4.2. A configuration of a Turing Machine M is an element of
Qx FI"(UW)* x N

and we now explain this. Here w is the smallest infinite ordinal, which is N, so
that (U)“ is an infinite string of LI's (infinitely many blank symbols), and N is the
set of natural numbers including 0. A configuration (¢,F y(U)“,n) means that
the current state of M is ¢, the infinite string - y(L)“ is written on the tape
(where y € I'*), and the current tape head is pointing at the »™ cell. For a
machine M, the starting configuration on input x € ¥* is (s, x(U)¥,0), which
means that the head is pointing at the left-most cell.

Alternative Notation. A configuration (¢, 0,i) is also represented by the string
zqo’, where o = zo’ and |z| = i — 1. So, the notation z¢o’ means that the head
points at the |z| + 1™ cell, the current state is ¢ and the tape reads zo’.

Definition 4.3. Let M be a Turing Machine. We define the language of M as
L(M)={we¥* | skw>F utv for some u,v € '}

In the above definition, recall that s is the starting state of A/, and ¢ is the accept-
ing state. Any language accepted by a Turing Machine is said to be recursively
enumerable (RE or REC_ENUM).

Remark 4.0.1. Just like in DPDAs, even if we have a deterministic Turing Ma-
chine, there is no guarantee that the machine processes all of the input, i.e there
can be words which have non-terminating runs which include things like infinite
loops. So, there is no guarantee that if M is a Turing Machine and w ¢ L(M),
the word w ends up at the reject state ». However, this doesn’t prevent us from
defining the language of a Turing Machine

Keeping the above remark in mind, we have the following definition.

Definition 4.4. If)M is a Turing Machine which processes the entire input, i.e
every word has a terminating run is called a Total Turing Machine (TTM). In-
formally, there is no word on which the TM reaches infinite loops. A language
accepted by some TTM is said to be a recursive language (REC). It is clear that
any TTMis a TM as well, i.e REC C RE.

Remark 4.0.2. The difference betweena TTM and a TM is precisely their work-
ing on words which are not accepted. In a TM, a word which is not accepted
may have an infinite run, i.e the run for the word may never terminate. How-
ever, in a TTM, every word is guaranteed to have a finite run, and hence in a
TTM any word that is not accepted will surely end up at the rejecting state.

Example 4.1. Let us work with the language L = {ww | w € ¥*}, which we know
is not context free (which can be easily shown using the pumping lemma), where
¥ = {a,b}. Complete this example.

THEORY OF COMPUTATION 43

Definition 4.5. Let L be any language, or equivalently let L be any decision prob-
lem. Then L is said to be decidable if some TTM recognizes L, and it is said to
be semi-decidable if some TM recognizes L.

Remark 4.0.3. Before continuing, I will mention the power of Turing Machines.
Roughly, any algorithm that can be implemented in Python can be implemented
via a Turing Machine as well. So in some sense, the model of Turing Machines
is the most powerful computational model that we know.

Theorem 4.1. There exist languages which are not RE.

Proof. We use a cardinality argument to prove this. Suppose Y is any finite
alphabet, and hence X* is an infinite set. The set of all languages over X* is just
Z(3*), which is uncountable by Cantor’s Theorem. However, it is easy to see
that the set of all Turing Machines over X is a countable set. Hence, there are
languages which are not recursively enumerable. |

Remark 4.1.1. Another interesting an perhaps easier way of seeing why the
set of all TMs is countable is by using the fact that TMs can be encoded us-
ing a suitable encoding scheme over {0,1}. We will see this in the section on
Universal Turing Machines.

Example 4.2. Consider the language L = {a"#a™ | n*> = m>}. We will show that
this language is decidable by exhibiting a TTM for it. First, note that it is very
easily seen (by using the Pumping Lemma) that this language is neither regular
nor context free. Complete this example.

4.1. Non-Determinism. As usual, there is a notion of non-determinism in Tur-
ing Machines as well. Let us now explore this.

Definition 4.6. A non-deterministic TM M is a tuple
M= (Q,%,T,6,s U, tr)

where all the symbols have the same meaning, except the set of transitions 6,
which is a just a relation instead of being a function,i.e § C (Q xI') x (Q x I' x
{L, R}). Given any non-deterministic TM M/, its language L(M) is defined as all
those words which have atleast one accepting run, i.e

L(M) :={w € X" | Thereis a run s - w >+ utv for some u,v € "}

Theorem 4.2. Every non-deterministic TM is equivalent to a deterministic TM.
Hence, non-determinism does not add any power to TMs. Similarly, every non-
deterministic TTM is equivalent to a deterministic TTM.

Proof. The idea is simple as always. Suppose we are given an input word w and
a non-deterministic TM M. The initial configuration of the TM M will be s F w.
Now, because M is non-deterministic, the computation can take several differ-
ent paths. So, all of the possible paths can be represented via a configuration
tree. A configuration tree is a rooted tree in which the root of the tree is the
initial configuration of M, and every possible branch corresponds to the possi-
ble paths the TM can take (note that if A/ was deterministic, the configuration
tree would be a path). Now, we make a deterministic TM M’ that is equivalent to
M as follows. M’ will put all of the possible configurations in the configuration
tree on its tape, in a breadth first fashion (BFS). Moreover, all the configura-
tions will be separated by a special symbol, say #. So, M’ begins by writing the

44 SIDDHANT CHAUDHARY

initial configuration s - w# on its tape. Now suppose this configuration had 3
possible transitions, leading to configurations ¢, co, c3 where ¢, ¢2, ¢35 € (QUT)™.
Then, the TM M’ will write each of these configurations on its tape one by one,
separated by a #, so the tape of the TM M’ will look like

s wHci#eoftcs

Then, the TM M’ will look at the configuration ¢;, and will append all possible
paths that it could take from ¢, at the end of its tape. This is the breadth first
fashion procedure.

Finally, a word is accepted if and only if one branch of the configuration tree
halts and ends up at the accepting state ¢, i.e a word is accepted if and only
if the tape ever sees the symbol ¢. Similarly, if M was a TTM, M’ would be a
TTM as well, as any word that will be rejected by M will have a halting path in
the configuration tree that ends up at the rejecting state r. This completes the
proof. [|

Corollary 4.2.1. A language is decidable if and only if some non-deterministic
TTM accepts it.

Theorem 4.3. If L is RE and L° is RE, then L is REC.

Proof. Let M and M’ be deterministic TMs for L and L¢ respectively. We make
a TTM M" as follows. Let ¢, and ¢ be the initial configurations of M and M’
respectively on some input. M’ writes the following on its tape.

cottc),

i.e it writes the configurations of both M and A’ on its tape separated by a #.
Then suppose ¢; and ¢| are the configurations of M and M’ after one step. Then
M" writes these on its tape, i.e the tape becomes

cotcyte #c)

So M" does its computation by successively writing the configurations of M
and M’ onits tape. M" accepts if it ever sees a ¢ on its tape, and rejects if it ever
sees anr. Hence, M"” isa TTM, and so L is REC. |

Remark 4.3.1. It turns out that this is actually an if and only if statement, be-
cause as we shall see later, the complement of a REC language is also REC.

Definition 4.7. A language L is said to be co-RE if L¢is RE.

4.2. Universal Turing Machine. In this section, we will see our first example
of a semi-decidable problem.

Suppose we are given a Turing Machine M and an input = over the input al-
phabet on M. The membership problem is the problem of determining whether
x € L(M). We will state this problem as a particular language, and we will show
that this language is RE but not REC. This will show that the membership prob-
lem is semi-decidable, but not decidable.

Suppose we are given some encoding of a Turing Machine M over the al-
phabet {0,1} (TMs can be encoded over {0,1}. Check some online source or
Kozen’s book to see how). Now, suppose z is any input over the input alphabet
of M which is also encoded over {0, 1}. So, consider the language

L={M#x|xze L(M)}
over the alphabet {0, 1, #}. We will show that L is a semi-decidable language.

THEORY OF COMPUTATION 45

Theorem 4.4. L is a semi-decidable language.

Proof. We make a TM U that will accept the language L. I will give a high level
description of U, since a detailed formal description is very hard to give. U
will be a multitape machine with three tapes (to see why multitape TMs are
equivalent to single tape TMs, see PSET-12).

Given an input M#z, U first checks whether M is a valid encoding of a TM and
whether z is a valid encoding of a string of M’s input alphabet. If either of these
is invalid, then U rejects.

If the encodings are valid, then U begins by writing the encoding (description)
of M on its first tape. The second tape of U will be used to blindly simulate M,
so U then writes the input string = on its second tape. The final tape will contain
the information about the current state M is in and the current position of the
head of M. Then, U just blindly simulates M on the input = on the second tape,
where U checks the first tape for which transition to use and it keeps updating
the third tape containing the current state of M and the current head pointer. U
accepts if M accepts, rejects if M rejects and goes in a loop if M goes in a loop.
So, it follows that U is not a TTM, because there are TMs M that go in loops. It
then follows that L = L(U) and L is semi-decidable. [

Note that the possibility that L is decidable still remains. We will explore this
further in the next section.

4.3. Diagonalisation. In this section, we will prove that the languages

HP := {M#z | M halts on z}
MP := {M#z | x € L(M)}

are not decidable. In particular, the language in Theorem 4.4 is not decidable
and only semi-decidable. HP stands for halting problem and MP stands for
membership problem. We will use the so called Cantor’s Diagonal Argument
which is very famous in set theory.

Theorem 4.5 (Undecidability of HP). The halting problem (HP) is undecidable.

Proof. First, we fix an encoding scheme over {0, 1} of TMs. For the sake of con-
tradiction, suppose the halting problem is decidable, i.e there is some TTM K
accepting the language

{M#zx | M halts on z}

For any x € {0,1}*, let M, be the TM over the input alphabet {0,1} whose en-
coding is given by z (if = is not a valid encoding of a TM over the input alphabet
{0,1}, then we let M, to be any (but fixed) TM over the input alphabet {0, 1}).
Since {0, 1}* is a countable set, we get an enumeration

M67 MOa M17 M007 M017

46 SIDDHANT CHAUDHARY

of all possible TMs over the input alphabet {0,1}. Now, consider the following
infinite matrix.

e 0 1 00 01
MY N N Y N
My Y N N N Y
My N N N N N
My N N Y Y N
My N N N Y Y

In the above matrix, we write a Y if the TM halts on the given word and we write
an N if it loops on the given word.

Now, consider a TM N on the input alphabet {0, 1} as follows. For z € {0, 1}*,
N writes M, #x on its tape, where M, is the encoding of the TM as described
earlierin the proof. Then, NV simulates the TM K on the input M_ #x. Note that by
the definition of K, K halts and accepts if M, halts on z, and K halts and rejects
if M, loops on z. Now, we make N so that N accepts if K rejects and NV goes to
a trivial loop if K accepts (in simple words, NN is essentially complementing the
diagonal of the above matrix).

So, N’s behavior is different from every TM in the matrix above. But this is a
contradiction, because the enumeration was supposed to contain all TMs over
the input alphabet {0, 1}. This completes the proof. |

Theorem 4.6 (Undecidability of MP). The membership problem (MP) of TMs is
undecidable.

Proof. We will show that MP is undecidable by reducing HP to it, i.e we show that
if MP can be decided, then HP can also be decided, but that would contradict the
Undecidability of HP 4.5.

For the sake of contradiction, suppose MP is decidable. So, thereisa TTM M’
which accepts the language

{M#x |z € L(M)}
Now we make a new TTM K for HP as follows.

(1) Given the input M#z, construct anew TM N as follows (by construct, we
mean write down encoding of a machine V). The machine NV, on any input
y, simulates M on y and accepts if M accepts or rejects, i.e if M halts on
y. This can easily be done by adding a new accept state to NV and having
a transition from the accept and reject states of)/ to this new state.

(2) After constructing the machine N, run M’ on the input N#x. Accept if M’
accepts and reject if M’ rejects.

Then, it is easily seen that K is a TTM for HP. But this is clearly a contradiction,
and hence MP must be undecidable. |

4.4. More Undecidable Problems. Let us begin with e-membership. Given the
encoding M of some TM, we need to determine whether ¢ € L(M). As it turns
out, this problem is undecidable.

Theorem 4.7. e-membership is undecidable.

THEORY OF COMPUTATION 47

Proof. We will reduce the e-membership problem to HP, and hence it will follow
that e-membership is undecidable. Needs to be completed. Look at PSET-13
Problem 2. the solution is very similar! |

4.5. Reductions. In this section we will give a concrete meaning to the notion
of a reduction.

Definition 4.8. Let X, A be two alphabets, and let A C ¥* and B C A* be two
languages. A reduction of A to B is a function o : ¥* — A* such that for all
xr € X,
r€A << o(x)€EB

Soin simple words, words in A go to words in B, and words not in A go to words
not in B. Moreover, the function ¢ must be total and effectively computable.
This means that ¢ must be computable by a TTM that on any input x halts with
the word o(z) on its tape. In this case, we say that A is reducible to B, which is
written as A < B (equivalently one says that A is the easier problem and B is
the harder problem).

Theorem 4.8. The following hold.

(1) If A < B and B is RE, then A is also RE. Equivalently, if A is not RE, then
B is also not RE.

(2) If A < Band B is REC, then A is also REC. Equivalently, if A is not REC,
then B is also not REC.

Proof. The proofs are rather straightforward. Since o is a computable func-
tion, given a TM for B, we can also make it to work for A as follows: given a
word z € ¥, first compute o(z), and then run B on the word o(z). This is where
the property

r€A << o(x)€eB

helps us. This completes the proof (a handwavy proof but it’'s not a very difficult
proof anyway). [|

Example 4.3. Here we consider the membership problem MP and the e-membership
problem e-MP. Let us call the latter EMP. First, we show that

EMP < MP

The computable function ¢ just maps a word M to the word M#¢, where M is
the encoding of some TM, i.e
o(M) = M#e
It is easy to see that o satisfies the required properties; M € EMP if and only if
M#e € MP.
Next, we will show that
MP < EMP

which is less obvious. This is very similar to the proof of Theorem 4.7. Our
computable function o is as follows: suppose the word is M#w, where M is the
encoding of a TM and w is a word over M’s input alphabet. Then o(M#w) =
Ny w, Where Ny, is the TM which behaves as follows: on input y, Ny, ignores
y,and simulates M on the word w. N, ,, acceptsif M accepts wand N,,,, rejects
if M rejects w. So we have

M#w € MP <= Ny, € EMP

48 SIDDHANT CHAUDHARY

If the word M#w is such that M is not a valid encoding of a TM or if w is not
a valid word over M’s input alphabet, then we let o (M#w) to be anything fixed
that is not in EMP.

So, it follows that EMP is RE but it is undecidable, since MP is RE and unde-
cidable. Alternatively, we can say that EMP is RE but not co-RE, since MP is RE
and not co-RE.

Example 4.4. Consider the problem of universality, i.e given the encoding M of
aTM,is L(M) = ¥*? Let us call this problem UNIV. We will first show the relation

MEM < UNIV

This is done exactly as in Example 4.3. For a word M#uw, let o(M#w) = Ny,
where N, ,, is as in Example 4.3. We see that

M#w € MP <= Ny, € UNIV

and hence this shows that UNIV is not co-RE, since MEM is not and also UNIV
is also undecidable, since MEM is undecidable. The only question remaining is
whether UNIV is RE. We will see that the answer is a no, and we will prove it as
a theorem.

Theorem 4.9. UNIV is not RE.

Proof. We will prove this by reduction from MEM to UNIV, and that will prove
the claim because we know that MEM is not RE (here the bar denotes the com-
plement of MEM). The idea involved here is neat.

Suppose we are given the word M#w, where M is the encoding ofa TM and w
is a word (i.e the encoding of a word) over M’s input alphabet. Our computable
function o will be as follows. Let o(M#w) = Ny;.,, Where Ny, is the encoding of
a TM which does the following: oninput y, N, ,, simulates the TM A on the word
w for |y| steps. If M accepts w within |y| steps, then N, rejects. If M rejects
w within |y| steps, then N,,,, accepts. Finally, if M/ does not halt on w within |y|
steps, then N, ,, again accepts (thus o isindeed a computable function because
a TTM can be used to find the required encoding N,,,,. Again, as usual, M and
w will be hard-wired in the encoding N,). Next, if M#w is not a valid encoding,
then we simply let o (M#w) to be any fixed encoding of a TM that is in UNIV.

Observe that for valid encodings M#w,

L(Nag) = {E* _ , ?f M rejects/does not halt on
’ {y € ¥* | M accepts w in more than |y| steps} , if M accepts w
So, we see that
M#w € MEM <= Ny, = o(M#w) € UNIV
This shows that MEM < UNIV. So, this proves that UNIV is not RE. [|

Remark 4.9.1. This gives us our first example of a language that is neither RE
nor co-RE! FINITENESS is another such language; look in PSET-14.

4.6. Rice’s Theorem. In this section, we will be proving a very powerful the-
orem about the decidability of some problems related to some property of RE
languages.

THEORY OF COMPUTATION 49

Definition 4.9. Let X be a fixed finite alphabet. A property of RE sets over X is
a map

P : {RE subsets of X*} — {T, F'}

where T and F represent true and false respectively. Given a property P of RE
sets, we ask this problem: is the property P decidable? So, we are essentially
asking that given a TM M, can it be decided what P(L(M)) is?

Remark 4.9.2. The above definition should be taken care of. Observe that P is
a property of L(M), i.e the language accepted by M and not a property of M
itself!

Definition 4.10. A property P of RE sets is said to be non-trivial if there are RE
sets Ly, Ly C ¥* such that P(L) # P(L,).

Theorem 4.10 (Rice’s Theorem I). Every non-trivial property of RE sets is un-
decidable.

Proof. Let P be a non-trivial property of RE sets. So, there are TMs M, M,
such that P(L(M;)) = T and P(L(M,)) = F. Now we know that ¢ is an RE set,
and hence either P(¢) = T or P(¢) = F. Without loss of generality, we assume
that P(¢) = F, and the proof when P(¢) = T is analogous. Also, we will be using
the machine M, in our procedure below.

We will now reduce the halting problem HP to the set {M | P(L(M)) = T}.
Suppose we are given the word M#w. First, suppose M is a valid encoding of a
TM and suppose w is a valid encoding of a word over M’s input alphabet. Our
computable function o will be as follows; we let o(M#w) = Ny, Where Ny, is
a TM which does the following.

(1) On an input y, Ny, first simulates the machine M on w.
(2) If M halts on w, then Ny, ,, simply simulates the machine M; on the word
Y.
Now, if M#w is not a valid encoding (i.e either M is not a valid TM or w is not a
valid word over A’s input), we let o (M#w) = Ny, to be any fixed TM that does
not lie in the set {M | P(L(M)) = T}. For example, we might as well choose
Ny to be a TM accepting ¢.
Now we can show that ¢ is indeed a valid reduction. Suppose M#w is a valid

encoding. Then, observe that L(N,.,) = ¢ if M does nothaltonw,and L(Ny,,) =
L(M,) if M halts on w. So this means that

M#w € HP < Ny, € {M | P(L(M)) =T}

and this is precisely why we chose M;. On the other hand, if P(¢) = T was true,
we would have chosen M, instead of M;.

So, we have reduced the HP to the set { M | P(L(M)) = T'}. Since HP is unde-
cidable, it follows that the problem of determining the property P is also unde-
cidable. This completes the proof. |

Definition 4.11. Let X be a fixed finite alphabet. A property P of RE sets is said
to be monotone if given any RE sets A, B with A C B, itis true that P(A) < P(B),
where the order being followed is F' < T'. In simple words, a monotone property
isone in which if an RE set satisfies the property, all its RE supersets also satisfy
the property.

50 SIDDHANT CHAUDHARY

Theorem 4.11 (Rice’s Theorem II). Any non-monotone property of RE sets is
not semidecidable.

Proof. Let P be any non-monotone property of RE sets. We will reduce the com-
plement of the halting problem HP to the set {M | P(M) = T} := Tr. This will do
our job since we aleady know that HP is not RE.
Since P is non-monotone, there are TMs M,, M; with L(M,) C L(M;) such
that P(L(M,)) =T and P(L(M,)) = F. This information will be useful to us.
Since we want to reduce HP to T, given an input M #w, we want to make a TM
N such that Ny, € Tp if and only if M does not halt on w. So, suppose M#w

is a valid encoding, and we construct an encoding N,,,, of a TM as follows.

(1) Nar. Will have three tapes.
(2) On input y, Ny, Will simulate M, on y on its first tape; it will simulate
M, on y on its second tape, and on its third tape N, will simulate M on
w. Moreover, N, ,, will do all these simulations in parallel; i.e each tape
operation will be performed one at a time for each of the three tapes.
(3) N Will accept the input y if either of the following occurs:
(@) M, accepts y.
(b) M halts on w and M, accepts v.

Now, either M will halt on w or it won’t. If M does not halt on w, then we see that
L(Nyrw) = L(M,). If M halts onw, we see that L(Nyy,,) = L(My)UL(M;) = L(My).
So we have shown that

M#w € HP <= Ny, € Tp

So, we let o(M#w) = Ny, to be our computable function. So, this shows that

problem of determining whether M € T is undecidable, since HP is undecid-
able. |

4.7. Post’s Correspondence Problem. Suppose we are given n pairs

(uhvl)) (Ug,l}g),) (unavn)

where each pair is a pair of words. Post’s Correspondence Problem or PCP
asks whether there are finitely many indices iy, is, ..., iy € {1,...,n} such that

Uy Uiy - Ugy, = V4 Viy - Uy,
We can state PCP in a different way. Given finite input alphabets X, I" and two
homomorphisms h : ¥ — I'™and g : ¥ — I'*, we want to see if there is some
w € ¥*\ {e} such that h(w) = g(w). To see why this is equivalent to PCP, we can
let X = {(uy,v1), ..., (un, v,)} and we can let the homomorphisms £, g be such that
h(u;, v;) = u; and g(u;, v;) = v;. We will now state a theorem, but we will not fully
prove it here.

Theorem 4.12. PCP is RE and undecidable.

Proof. The fact that PCP is RE is easy to see. Just enumerate every word w over
Y one by one in length-lexicographic order, and check whether h(w) = g(w). We
will not prove undecidability here. A good proof is given in Sipser’s book. |

THEORY OF COMPUTATION 51

4.8. Minsky Machines. In this section we will see yet another computation
model.

Definition 4.12. A Minksy Machine is a machine with finitely many states and
two counters A and B, each counter having a value in the set NU {0}. There
are three types of transitions: A++, A-- and IFZ(A) and these are defined anal-
ogously for B. A transition of the form

A++
q—4q

goes from state ¢ to ¢/, incrementing the counter A by 1. A transition of the form
A--
q—q

goes from ¢ to ¢/, decrementing the counter A by 1. Finally, a transition of the

form
IFZ(A)
% q

goes from state ¢ to ¢’ only if the current value of A is zero (IFZ stands for if
zero). In general, we can modify this definition to hold any number of counters.
A machine of that type is called a k-counter machine. So, a Minksy Machine is
just a 2-counter machine.

Remark 4.12.1. Even though it is implicit in the definition, it is still important to
note that if the current value of counter A is 0, then a transition of the form A--
cannot be taken. A similar thing holds for the counter B.

Definition 4.13. A configuration of a Minsky Machine M is a tuple of the form
(g, m,n), where ¢ is the current state and m,n € NU {0} are the current values
of counters A and B respectively. Similarly we can define configurations for
k-counter machines.

4.9. Control State Reachability Problem. Let us now see a problem related
to Minksy Machines, called the control state reachability problem (CSRP). The
input to the problem will be a Minsky Machine M and a target state . The ques-
tion is whether there is a run in M from the starting state s to the target state
t.

Proposition 4.13. The control state reachability problem for k-counter ma-
chines is RE for any k.

Proof. The idea is simple; we just do a BFS on the configuration graph, i.e the
graph in which the nodes are configurations and there are edges between these
nodes if one configuration is reachable from another. Ofcourse the graph will
be infinite, but we don’t need to build the whole graph. We just need to start
our BFS from the root configuration, and go step by step. This proves that the
problem is RE. |

Proposition 4.14. The control state reachability problem for 1-counter ma-
chines is decidable.

Proof. Observe that any 1-counter machine can be simulated by a PDA; a decre-
ment operation is simulated by popping a stack, an increment operation is sim-
ulated by pushing onto the stack, and the IFZ operation is just checking whether
the stack is empty. So, the control state reachability problem for 1-counter ma-
chines is the same as that for PDAs. In the PDA, we can make the target state

52 SIDDHANT CHAUDHARY

final, and then just check whether the language of the PDA is non-empty. This is
clearly a decidable problem, by converting the PDA to a CFG and then checking
non-emptiness for the CFG. |

Later we will show that the CSRP for 2-counter machines/Minsky Machines is
undecidable.

4.10. 2-Stack PDAs. A 2-stack PDA is a PDA with two stacks, i.e each configu-
ration is of the form (¢,v, 3), where v € I'; and 5 € T';, where I'; and I'; are the
stack alphabets of the two stacks respectively. We can state a CSRP for 2-stack
PDAs as well; the input to this problem is a pair (A, ¢) where A is a 2-stack PDA
and ¢ is a target state. The question is whether ¢ is reachable from the start
state of the PDA. We will show that this problem can be reduced to the empti-
ness problem for TMs by showing that every TM can be simulated by a 2-stack
PDA,; thus is will follow that CSRP for 2-stack PDAs is undecidable.

Theorem 4.15. Every TM can be simulated by a 2-stack. Thus, the control state
reachability problem CSRP for 2-stack PDAs is undecidable.

Proof. The idea of simulating a TM using a 2-stack PDA is simple. Consider the
tape of the TM. Everything towards the left of the tape head will be stored in one
stack, and everything to the right of the tape head will be stored in the second
stack. If the head of the tape moves left, then we will pop the top symbol of the
first stack and push it to the top of the second; if the head of the tape moves
right, then the top symbol of the second stack will be popped and pushed at the
top of the first stack. Thus, every TM can be simulated by a 2-stack PDA (the
details of the transitions are easy to fill in).

Next, consider the control state reachability problem for 2-stack PDAs. We
will reduce the non-emptiness problem of TMs to this problem, and hence it
will follow that this problem is undecidable. So, let a TM M be given. Construct
a 2-stack PDA A, out of M, and let t be the accept state of the PDA A,,;. So our
computable function o is X(M) = (A, t). Itis then clear that

Me{T|TisaTMand L(T) # ¢} <= (An,t) € CSRP for 2-stack PDAs

and hence ¢ is a valid reduction. This completes the proof. |

4.11. Undecidability of 4-Counter Machines. In this section, we will show that
the CSRP for 4-counter machines is an undecidable problem. The idea will be
to simulate a stack using two counters, and use the fact that CSRP for 2-Stack
PDAs is undecidable.

So, let us show how to simulate a stack using two counters. Without loss of
generality, we assume that our stack alphabet is {0,1}. In this way, the stack
content is a binary word with the least significant digit at the top of the stack.
Our first counter A will hold this binary number. Note that pushing a 0 onto the
stack is the same as doubling the number in A, pushing a 1 on the stack means
doubling the number in A and adding a 1. This can be easily done as follows:
decrement A until it is zero, and for every decrement step, increment B twice;
this achieves the effect of doubling the number. Similarly, poppingaOoral
from the stack is achieved by dividing by 2. So, it follows that a stack can be
simulated using two counters. Hence, a 2-Stack PDA can be simulated using a
4-Counter Machine. Hence, the CSRP for 4-Counter Machines is undecidable.

THEORY OF COMPUTATION 53

4.12. Undecidability of Minsky Machines and Godel Numbering. In this sec-
tion, we will show that a 2-Counter Machine (equivalently a Minsky Machine)
can be used to simulate a 4-Counter Machine, which will show that a 2-Counter
Machine can simulate a TM, because 4-Counter Automatons can simulate TMs
by simulating 2-Stack PDAs. This will inturn show that the CSRP for Minsky Ma-
chines is undecidable. Suppose we are given a 4-Counter Machine, and sup-
pose the current values of the four counters are (n;,ny,n3,n4). We will encode
this tuple into a single value, namely the value 2" 3"25"37", This kind of num-
bering is called Godel Numbering. In this way, incrementing /decrementing the
first counter means multiplying/dividing by 2, and a similar situation holds for
the other counters as well. By carrying out multiplication/division in a second
counter, we can thus simulate 4-counters using 2-counters, and this completes
the proof (This is not really a proof, rather the idea of a proof. Maybe I will make
this section more detailed sometime).

4.13. Universality of CFL. Let G be a CFG, and we want to check whether L(G) =
>* or not. Let
UCFG ={G | GisaCFGand L(G) = ¥*}

It is easy to see that UCFG is RE, because we can just enumerate every word
of X* and check membership using the CYK algorithm. So, we see that UCFG
is co-RE. Now, we will show that UCFG is undecidable, and that will show that
UCFG is not RE. To prove this, we will use the so called computation histories
(Unfortunately, due to time constraints, I could not write this section in my own
words. However, a very nice proof of this fact using computation histories is
given in Kozen’s book).

	1. Languages
	2. Finite Automatons
	2.1. Non-determinism
	2.2. Equivalence of NFAs and DFAs
	2.3. Epsilon Transitions
	2.4. Operations on Regular Languages
	2.5. Homomorphisms
	2.6. Quotients
	2.7. Rational Languages
	2.8. GNFAs
	2.9. Using quotients to prove non-regularity
	2.10. Two equivalence Relations
	2.11. DFA Minimization
	2.12. Partition Refinement
	2.13. Pumping Lemma

	3. Context Free Languages
	3.1. Closure Properties
	3.2. Homomorphisms
	3.3. Derivation Trees
	3.4. The Emptiness Problem
	3.5. Membership Problem
	3.6. Chomsky Normal Form (CNF)
	3.7. Membership Problem Continued
	3.8. Revisiting A Closure Property
	3.9. Pumping Lemma for CFLs
	3.10. Greibach Normal Form
	3.11. Push-Down Automatons
	3.12. Closure Properties of PDAs
	3.13. Another Mode of Acceptance
	3.14. CFLs and PDAs
	3.15. Deterministic PDAs
	3.16. Closure of DCFLs under Complementation
	3.17. Parikh's Theorem

	4. Turing Machines and Computability
	4.1. Non-Determinism
	4.2. Universal Turing Machine
	4.3. Diagonalisation
	4.4. More Undecidable Problems
	4.5. Reductions
	4.6. Rice's Theorem
	4.7. Post's Correspondence Problem
	4.8. Minsky Machines
	4.9. Control State Reachability Problem
	4.10. 2-Stack PDAs
	4.11. Undecidability of 4-Counter Machines
	4.12. Undecidability of Minsky Machines and Godel Numbering
	4.13. Universality of CFL

