TOC PROBLEM SET-1

SIDDHANT CHAUDHARY
BMC201953

1. If possible, construct a DFA over the alphabet $\Sigma=\{0,1\}$ that accepts a binary string w if and only if $(w)_{10}$ is divisible by:
(a) 2. This is an easy one. We need to accept only those words which end with a 0 . A possible DFA for this is given below.

(b) 3. Here is the key observation: $2^{k}=2(\bmod 3)$ if k is odd, and $2^{k}=1(\bmod 3)$ if k is even. Note that we scan a word from right to left. So we maintain six states, which are labeled by an order pair of the form $(0, x)$ or $(1, x)$, where x is any residue mod 3 , and 0 and 1 represent the number of bits scanned modulo 2. The transitions from one state to another is easy by the given congruences. So, the following DFA works:

where the accepting states are only those which have a residue of $0 \bmod 3$.
(c) 2 and 3 . In this case, $(w)_{10}$ will be divisible by 6 . We can repeat the exact same procedure as above, keeping in mind the following congruences:

$$
2^{k}= \begin{cases}1(\bmod 6) & , \text { if } k=0 \\ 2(\bmod 6) & , \text { if } k=1(\bmod 2) \text { and } k>0 \\ 4(\bmod 6) & , \text { if } k=0(\bmod 2) \text { and } k>0\end{cases}
$$

Keeping these in mind, the DFA is the following:

I think in general, given a string in base 2 , we can construct a DFA to check if $(w)_{10}$ is divisible by n by finding congruences for powers of 2 .
2. Can you construct an NFA over $\Sigma=\{a, b\}$ that accepts a word w if and only if w contains exactly one $a b$ and two $b a$'s as in fixes (overlap is allowed)? Can you give a DFA that accepts the same language?

Solution: We give a DFA for this problem. First, note that the string will be scanned from right to left. We need two $b a$'s and one $a b$. Either of these occurs if there is a letter switch. Observe that if the string begins on the right with a b, then it cannot have more $b a$'s than $a b$'s, and so in this case the desired output cannot be achieved. The only scenario in which we get two $b a$'s and one $a b$ is whe the string starts with an a on the right. We keep track on the number of $b a$'s and $a b$'s, and get the following DFA:

where dead represents a dead state, i.e the possible configuration cannot be achieved.
3. Prove that for words u, v and an integer $e \geq 0, u(v u)^{e}=(u v)^{e} u$.

Solution: By induction on e. Base case for $e=0$ is clear. Suppose it is true for $e-1$. Then, we have

$$
\begin{aligned}
u(v u)^{e} & =u(v u)(v u)^{e-1} \\
& =(u v) u(v u)^{e-1} \\
& =(u v)(u v)^{e-1} u \\
& =(u v)^{e} u
\end{aligned}
$$

where induction was used in the second last step, and we used the fact that concatenation is associative.
4. Construct an automaton over the alphabet $\Sigma=\{a, b, c\}$ that accepts the language $L=\left\{\left.w| | w\right|_{a}+|w|_{b}\right.$ is odd $\}$.

Solution: Here, we only need to keep track of $|w|_{a}+\left|w_{b}\right|$ modulo 2. The following DFA is easy to construct:

