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Proposition 0.1. Every DCFL is a CFL.

Proof. It is enough to show that every DPDA is equivalent to some PDA. So, sup-
pose A = (Q,Σ,Γ, δ,⊥, $, s, F ) be a DPDA, where $ is the right-end marker. We
will make a PDA A′ which is equivalent to A. Let Q′ be a copy of the set Q that is
disjoint from Q, i.e Q ∩Q′ = ϕ. For any q ∈ Q, the copy of q in Q′ will be denoted
by q′. Now, let

A′ = (Q ∪Q′,Σ,Γ, δ′,⊥, s, F ′)

so that F ′ is the new set of final states, where F ′ is the copy of F inside Q. Now
we describe the set δ′ of transitions. Suppose

(q,X)
c−→ (q1, Y )

is a transition in A, where q, q1 ∈ Q, c ∈ Σ∪ {ϵ},X ∈ Γ and Y ∈ Γ∗. Then, add the
same transition to the set δ′ as well. Next, suppose there is a transition

(q,X)
$−→ (qf , Y )

in A, where q, qf ∈ Q, qf ∈ F , X ∈ Γ and Y ∈ Γ∗. Then, add the transition

(q,X)
ϵ−→ (q′f , Y )

to the set δ′. So essentially, we have removed all transitions involving $ and
made them appropriate ϵ-transitions in the PDA A′. It is easy to see that L(A) =
L(A′), and this completes the proof. ■

1. Check whether the language L = {w ∈ {a, b}∗ | w ̸= xx for any x ∈ {a, b∗}} is
a deterministic CFL (DCFL).

Solution. In class (in Lecture 16) we showed that the language
Lc = {ww | w ∈ Σ∗}

is not a CFL. In particular, Lc is not a DCFL, since every DCFL is also a CFL by
Proposition 0.1. Now if L was a DCFL, it would imply that Lc is also a DCFL
(since DCFLs are closed under complementation), and that is a contradiction.
So, it follows that L is not a DCFL. This is an important example as it shows that
deterministic PDAs are not as powerful as non-deterministic ones. ■

2. Every DPDA M can be converted to a DPDA M ′ such that M ′ processes the
entire input. Prove that we can convertM ′ to a DPDAM ′′ such that every tran-
sition is either a push or pop operation on the stack but not both.

Solution. To be completed. ■
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3. Prove that if L is a DCFL then there exists aMyhill-Nerode equivalence class
of infinite cardinality (Use problem 2. for a reference of the structure of a DPDA
recognizing L).

Solution. Let L be a DCFL that is accepted by the DPDA M , and without loss
of generality suppose M never empties its stack (it can be easily shown that
every DPDA is equivalent to one that never empties its stack, and the proof is
very similar to the one in the case of PDAs). Consider the set

S1 := {(q,X) ∈ Q× Γ | ∄w ∈ Σ∗ s.t (q,X)
w−→
∗

(q′, ϵ) , q′ ∈ Q}

Clearly, S1 is a finite set (because it is a subset of the finite set Q× Γ), and also
S1 is non-empty because (s,⊥) ∈ S1 (becauseM never empties its stack). Now,
consider the set

W := {w ∈ Σ∗ | If (s,⊥)
w−→
∗

(q,Xγw) for some γw ∈ Γ∗, then (q,X) ∈ S1}

Wewill show thatW is an infinite set. For the sake of contradiction, supposeW
is a finite set, and hence the lengths of words inW is bounded above by some
constant, say C . Now, let w ∈ Σ∗ by any word with |w| > C . So, there is a unique
run

(s,⊥)
w−→
∗

(q,Xγw)

for some q ∈ Q and X ∈ Γ (recall that M never emptied its stack). Because
w /∈ W , we see that (q,X) /∈ S1, and hence there is some word w1 ∈ Σ∗ such that

(q,X)
w1−→ (q1, ϵ)

for some q1 ∈ Q, and hence ww1 has the following run.

(s,⊥)
w−→
∗

(q,Xγw)
w1−→
∗

(q1, γw)

Now if γw = ϵ, then this contradicts the fact that M never emptied its stack.
So γw ̸= ϵ, and we can write γw = X1γ1 for some X1 ∈ Γ and γ1 ∈ Γ∗, so that
|γw| > |γ1|, and hence the run is

(s,⊥)
w−→
∗

(q,Xγw)
w1−→
∗

(q1, X1γ1)

Now because |ww1| > C , ww1 /∈ W , and hence (q1, X1) /∈ S1. So, there is some
w2 ∈ Σ∗ such that

(q1, X1)
w2−→
∗

(q2, ϵ)

for some q2 ∈ Q, and hence ww1w2 has the run

(s,⊥)
w−→
∗

(q,Xγw)
w1−→
∗

(q1, X1γ1)
w2−→
∗

(q2, γ1)

Again, if γ1 = ϵ, then it contradicts the fact thatM never empties its stack. So,
γ1 = X2γ2 for some X2 ∈ Γ, γ2 ∈ Γ∗, so that |γ1| > |γ2|, and hence the run is

(s,⊥)
w−→
∗

(q,Xγw)
w1−→
∗

(q1, X1γ1)
w2−→
∗

(q2, X2γ2)

Now repeating the same argument finitely many times (the argument can’t be
repeated infinitely many times), we will get words w1, w2, ..., wn, wn+1 ∈ Σ∗ with a
run

(s,⊥)
w−→
∗

(q,Xγw)
w1−→
∗

(q1, X1γ1)
w2−→ ...

wn−→
∗

(qn, Xnγn)
wn+1−−−→

∗
(qn+1, γn)
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where (q,X), (qi, Xi) /∈ S1 for 1 ≤ i ≤ n and

|γw| > |γ1| > ... > |γn| = 0

but again this is a contradiction to our assumption that M never empties its
stack. So, it follows thatW is an infinite set.
Now, because W is an infinite set and S1 is a finite non-empty set, it follows
(by the pigeonhole principle) that there is some (q,X) ∈ S1 such that there are
infinitely many words w ∈ W such that

(s,⊥)
w−→
∗

(q,Xγw)

for some γw ∈ Γ∗. So let

W ′ := {w ∈ W | (s,⊥)
w−→
∗

(q,Xγw) for some γw ∈ Γ∗}

so thatW ′ is an infinite set.
Using this pair (q,X), we are all set to show that there is a Myhill-Nerode

class of infinite cardinality for the language L = L(M). Suppose w′ is a fixed
word, with w′ ∈ Σ∗. Then starting from the configuration (q,X), we see that w′

has a unique run

(q,X)
w′
−→
∗

(q′, αX)

for some α ∈ Γ∗ and q′ ∈ Q, and this is because (q,X) ∈ S1, so that in this
run, X will never be popped from the stack (because if it was popped, it would
contradict the fact that (q,X) ∈ S1). So, for any γ ∈ Γ∗, the run of w′ starting
from the configuration (q,Xγ) is of the form

(q,Xγ)
w′
−→
∗

(q′, αXγ)

Again, this is because of the fact that (q,X) ∈ S1, and the word γ will never
be exposed in the stack during this run (because X will never be popped), and
hence the run is independent of γ. In particular, we have shown that if w ∈ W ′

is anyword, then the run for the word ww′ always ends up at the state q′, i.e the
run is

(s,⊥)
w−→
∗

(q,Xγw)
w′
−→
∗

(q′, αXγw)

So this means that for any w1, w2 ∈ W ′, either w1w
′, w2w

′ ∈ L or w1w
′, w2w

′ /∈
L. Now because the word w′ was arbitrary, this shows that all words in W ′

belong to the same Myhill-Nerode equivalence class, and sinceW ′ is infinite, it
follows that there is aMyhill-Nerode class of infinite cardinality, completing the
proof. ■

4. Can you construct a DPDA recognizing the language {w ∈ {a, b}∗ | w = wr}
of palindromes?

Solution. To be completed. However, the answer is a no, because everyMyhill-
Nerode equivalence class for this language is finite, which contradicts problem
3. ■
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5. Construct a DPDA recognizing the language
{ambncn | m,n ≥ 1} ∪ {ambndm | m,n ≥ 1}

[Bonus: Can you remove the ϵ-transitions without compromising the deter-
minicity?]
Solution. SupposeΣ = {a, b, c, d} and Γ = {⊥, A,B}, and letA be a DPDA defined
as follows

A = ({s, q1, q2, qf , qdead},Σ,Γ, δ,⊥, $, s, {qf})
where $ is the usual right-endmarker. So, there are five states s, q1, q2, qf and
qdead where s is the starting state and the only final state is qf . The state qdead
will act as a rejecting state. Now, we describe the set of transitions δ. First, the
following transitions will be present in δ.

(s,⊥)
a−→ (s, A ⊥) , (s,⊥)

b,c,d,$−−−→ (qdead,⊥)

(s, A)
a−→ (s, AA) , (s, A)

b−→ (s,BA) , (s, A)
c,d,$−−→ (qdead, A)

(s,B)
b−→ (s,BB) , (s,B)

c−→ (q1, ϵ) , (s,B)
d−→ (q2, B) , (s,B)

a,$−→ (qdead, B)

(q1, B)
c−→ (q1, ϵ) , (q1, B)

a,b,d,$−−−→ (qdead, B)

(q1, A)
$−→ (qf , A) , (q1, A)

a,b,c,d−−−→ (qdead, A)

(q2, B)
ϵ−→ (q2, ϵ)

(q2, A)
d−→ (q2, ϵ) , (q2, A)

$−→ (q2, ϵ) , (q2, A)
a,b,c−−→ (qdead, A)

(q2,⊥)
ϵ−→ (qf ,⊥)

Then, for any X ∈ Γ add the transitions
(qf , X)

ϵ−→ (qf , X)

(qdead, X)
ϵ−→ (qdead, X)

Finally, if there is some q ∈ Q andX ∈ Γ such that the above list doesn’t contain
any transition for (q,X), then just add the transition

(q,X)
ϵ−→ (qdead, X)

It is then clear thatA is indeed a DPDA by looking at the nature of the transitions
in δ. Let me now roughly explain the idea. The state q1 helps in accepting words
of the form ambncn, and the state q2 helps in accepting words of the form ambndm.
The state s just helps in reading a′s and b′s and pushes A or B on the top of the
stack. If we read a c, we start popping a B for every letter c read thus far, and
if we read a d, then we first pop all the B′s from the stack, and then we pop an
A for every d read thus far. However, notice that the first d read will help in
entering the state q2 and to delete the B′s, but it will be lost, so in the end we
have to check whether the contents of the stack are A ⊥, and if they are, we
pop the A by reading $ and hence the word is accepted. ■
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