
TOC PROBLEM SET-12

SIDDHANT CHAUDHARY
BMC201953

Problem 1. A Turing Machine is a 7-tuple (Q,Σ,Γ, δ, q0, qaccept, qreject)where Q is
the set of states, Γ is the tape alphabet, δ : Q×Γ → Q×Γ×{L,R} is the transition
function, q0, qaccept, qreject are the initial, accept and reject states respectively.
Note that accept and reject states are distinct.
Give the TuringMachine for the following language by describing the TMwith

the 7-tuple defined above or the corresponding state diagram (as in Sipser,
Chapter 3):

L = {anbncn | n ∈ N}

Solution. The idea we use is very simple. Let
Q = {s, q1, q2, q3, q4, r, t}

where s is the starting state, r is the reject state and t is the accepting state.
Also, let

Γ = {⊢,⊔, a, b, c, am, bm, cm}
where them in the subscript meansmarked. Let me explain the working of the
TMwith an example. Suppose the input is ⊢ aaabbbccc. The machine will find the
first unmarked a, mark it and keep moving right, then find the first unmarked
b, mark it and keep moving right, then find the first unmarked c, mark it, and
then start moving left, until we find the first marked a (i.e am), and at that point
we move right and repeat the process. After all the letters are marked, the
machine just checks if there are any other remaining letters. If there are none,
then the word is accepted, otherwise it is rejected. The state diagram of the
machine is as follows (we assume that in the below diagram, if an edge is not
present, then it leads to the reject state r. We also assume that the states t and
r have self loops for every possible edge).
I have not included the state r in the above diagram because of the remark

made just above the diagram in pink. ■
Problem2. AMultitape TuringMachine is like an ordinary TuringMachinewith
multiple tapesand read/write head for each tape. Initially, the input appears on
tape 1. The transition function is defined as δ : Q×Γk → Q×Γk ×{L,R}k. Prove
that the ordinary single tape Turing Machines are as powerful as Multitape
Turing Machines.
Solution. In this problem, writing the transitions down explicitly will be amess.
So, I will just give an informal description about how the TMwill work. All of the
work will be done by operations on a single tape.
Suppose we are given a Multitape Turing Machine M , where the transition

function is of the form δ : Q× Γk → Q× Γk × {L,R}k. We will construct a Turing

Date: November 2020.
1



2 SIDDHANT CHAUDHARY BMC201953

Machine M ′ on a single tape which accepts the same language. Suppose the
left-endmarker ofM is ⊢. So, wewill let ⊢1 be the left-endmarker ofM ′. Now the
idea is as follows; suppose our inputword inΣ∗ isw. So, the initial configuration
of the k-tapes in the Multitape TMM will be s ⊢ w, s ⊢ , ... , s ⊢, i.e only the first
tape will have the input ⊢ w, and the rest of the tapes will only consist of the
left-endmarker ⊢. So, our TMM ′ will first write the initial configuration of each
of the k-tapes on its tape, and each configuration will be separated by a special
symbol, say #. So, the TMM ′ will begin by writing the following on its tape:

⊢1 s ⊢ w ⊔ #s ⊢ ⊔#s ⊢ ⊔#... ⊔ #s ⊢ ⊔ ⊔ ⊔...
where there are k − 1 #′s, as M contains k-tapes (notice the blank symbol ⊔
before every #. This will be important as we see ahead). Note that this notation
is helpful, because it indicates the position of the head on each of the tapes.
This suggests that the tape alphabet ofM ′ is Q ∪ Γ ∪ {#}.
Now, we describe the transitions inM ′. The idea is just to simulateM ′s tran-

sitions on each of its tapes on the single tape. So, suppose the tape ofM reads
the following.

⊢1 w1qc1w
′
1 ⊔ #w2qc2w

′
2 ⊔ #... ⊔ #wkqckw

′
k ⊔ ⊔ ⊔ ...

where each wi, w
′
i ∈ Γ∗ and each ci ∈ Γ. As an example, suppose the transition

in the original machine M is (q, {c1, c2, ..., ck}) → (q′, {c′1, c′2, ..., c′k}, {R,R, ..., R}).
Then our machineM ′ will execute these transitions one-by-one for each of the
k-tapes, i.e after the first step the tape ofM ′ will be

⊢1 w1c
′
1q

′w′
1 ⊔ #w2qc2w

′
2 ⊔ #... ⊔ #wkqckw

′
k ⊔ ⊔ ⊔ ...

and similarly the subsequent transitions will be performed on each tape (by
each tape we mean each #-separated block), and hence after k-steps the tape
will read

⊢1 w1c
′
1q

′w′
1 ⊔ #w2c

′
2q

′w′
2 ⊔ #... ⊔ #wkc

′
kq

′w′
k ⊔ ⊔ ⊔ ...

Note that all of these k-steps will be done consecutively inM ′. Finally, we need
to resolve the issue of the tape space running out for each of the k-tapes. But
this is easy. Before performing any transition as above, our TM M will check
whether there is atleast one blank sybmol ⊔ immediately before every # (this
is where the importance of the blank symbols comes in). If there is no blank
symbol before some #, then the machineM ′ will copy all of the remaining tape



TOC PROBLEM SET-12 3

and move it right by one step, and will add a blank symbol at that position. (All
of this is hard to explain by explicit notation, and that’s why we have to resort
to explaining it in words).
Hence, we have created a single tape TuringMachineM ′ that is equivalent to

the machineM . The set of states ofM ′ will be the ones which help in doing the
tape operations as mentioned above, but the overall idea is to just simulate the
k-tapes on a single tape. ■
Problem3. Show that the class of recursive languages is closed under the op-
eration of

(1) union
(2) concatenation
(3) star
(4) complementation
(5) intersection

Solution. To be completed ■
Problem4. Show that the class of recursively enumerable languages is closed
under the operation of

(1) union
(2) concatenation
(3) star
(4) intersection
(5) homomorphism

Solution. To be completed ■


	Problem 1
	Problem 2
	Problem 3
	Problem 4

