
TOC PROBLEM SET-14

SIDDHANT CHAUDHARY
BMC201953

1. Consider
FINITENESS = {⟨M⟩ | L(M) is finite}

Is FINITENESS RE? Is it co-RE?
Solution. We will show that FINITENESS is neither RE nor co-RE by reducing
the language HALT to the languages FINITENESS and FINITENESS. This will do
our job, because we already know that HALT is not RE, since HALT is RE and
undecidable.
First, let us reduce HALT to FINITENESS, i.e we showHALT ≤ FINITENESS. Let

M0 be any Turing Machine such that L(M0) = ϕ, and henceM0 ∈ FINITENESS.
We will now describe our computable function σ. Suppose a word ⟨M⟩#w is
given. If either ⟨M⟩ is not a valid encoding of a Turing Machine, or if w is not
a valid encoding of a word over M ′s input alphabet, then we put σ(⟨M⟩#w) =
M0 (notice that in this case it is clear that ⟨M⟩#w ∈ HALT, and that is why we
mapped it to M0). So, suppose the encoding ⟨M⟩#w is valid. We construct a
TM σ(⟨M⟩#w) = NM,w that does the following (M and w are hard-wired in the
encoding NM,w)

(1) On an input y, NM,w ignores y completely.
(2) NM,w then writes the word w on its tape.
(3) Finally,NM,w simulates the machineM on the word w. NM,w accepts ifM

halts on w.
Observe that ifM halts on w, then L(NM,w) = Σ∗. Moreover, ifM does not halt
on w, then L(NM,w) = ϕ. Clearly, Σ∗ is infinite and ϕ is finite. So from the above,
it follows that

⟨M⟩#w ∈ HALT ⇐⇒ NM,w ∈ FINITE
Thus, σ is a valid reduction, and this shows that FINITENESS is not RE.
Next, we reduce HALT to FINITENESS, i.e we show HALT ≤ FINITNESS. The

idea here will be a little more involved. LetM1 be any TuringMachine accepting
the language Σ∗. We will now describe our computable function σ. So, suppose
the word ⟨M⟩#w is given. As before, if either ⟨M⟩ is not a valid encoding of a
TuringMachine, or ifw is not a valid encoding of awordoverM ′s input alphabet,
thenweput σ(⟨M⟩#w) = M1 (notice that in this case it is true that ⟨M⟩#w ∈ HALT,
and that is why we mapped it toM1). So, suppose the encoding ⟨M⟩#w is valid.
We construct a TM σ(⟨M⟩#w) = NM,w that does the following (and as before,M
and w are hard-wired in the encoding NM,w)

(1) On input y, NM,w writes y on a separate tape.
(2) On another tape, NM,w simulates the machine M on the word w for |y|

steps. The machine NM,w accepts y if M does not halt on w within |y|
steps, otherwise it rejects.

Date: November 2020.
1



2 SIDDHANT CHAUDHARY BMC201953

Now observe the following. IfM halts on w, then we see that
L(NM,w) = all words of length less than the halting time ofM on w

i.e L(NM,w) is finite. On the other hand, ifM does not halt on w, then
L(NM,w) = Σ∗

which is infinite. So we have shown that
⟨M⟩#w ∈ HALT ⇐⇒ NM,w ∈ FINITENESS

Thus, σ is a valid reduction, and this shows that FINITENESS is not RE either.
This completes the solution. ■

2. Consider the following problem discussed in class, known as Intersection
Non-Emptiness for CFGs.

INE = {(G1, G2) | G1, G2 are CFGs, L(G1) ∩ L(G2) ̸= ϕ}
Is INE RE? Is it co-RE?

Solution. It is easy to see that INE is RE. We can give an easy description of a
TMK that accepts the language INE.We can have a TuringMachineK that enu-
merates words of Σ∗ one-by-one in length-lexicographic order, and for each
enumerated word w,K checks whether w ∈ L(G1) and w ∈ L(G2) using the CYK
algorithm. It is then clear thatK accepts the language INE, howeverK is not a
total Turing Machine.
We will now show that the language INE is actually undecidable by reducing

PCP to it (PCP:Post’s Correspondence Problem), i.e we will show that
PCP ≤ INE

Because PCP is undecidable, this will show that INE is undecidable, and there-
fore this will show that INE is not co-RE because above we have shown that it
is RE.
Here is the reduction (recall that inPCP, the input is pairs (u1, v1), (u2, v2), ..., (uk, vk)

of words). Suppose we are given the input (u1, v1), (u2, v2), ..., (uk, vk). Our com-
putable function σ will be as follows. Let σ((u1, v1), ..., (uk, vk)) = (G1, G2), where
G1 is the CFG

S → 1Su1 | 2Su2 | ... | kSuk | 1u1 | 2u2 | ... | kuk

and G2 is the CFG
T → 1Tv1 | 2Tv2 | ... | kTvk | 1v1 | 2v2 | ... | kvk

It is easy to see that
L(G1) = {a1a2...anuanuan−1 ...ua1 | a1a2...an ∈ {1, ..., k}∗ \ {ϵ}}
L(G2) = {a1a2...anvanvan−1 ...va1 | a1a2...an ∈ {1, ..., k}∗ \ {ϵ}}

and this can be easily seen by the nature of productions of the given grammars.
Now, I will show that

(u1, v1), (u2, v2), ..., (un, vn) ∈ PCP ⇐⇒ L(G1) ∩ L(G2) ̸= ϕ

First, suppose there is aPCPsolution to this input, i.e there is someword a1a2...an ∈
{1, ..., k}∗ \ {ϵ} such that

ua1ua2 ...uan = va1va2 ...van



TOC PROBLEM SET-14 3

Then, we have

anan−1...a1ua1ua2 ...uan = anan−1...a1va1va2 ...van ∈ L(G1) ∩ L(G2)

so that L(G1) ∩ L(G2) ̸= ϕ. Conversely, suppose L(G1) ∩ L(G2) ̸= ϕ. So, there is
some word a1a2...an ∈ {1, ..., k}∗ \ {ϵ} such that

a1a2...anuanuan−1 ...ua1 = a1a2...anvanvan−1 ...va1

So, we see that
uanuan−1 ...ua1 = vanvan−1 ...va1

and hence (u1, v1), (u2, v2), ..., (un, vn) has a PCP solution. So, σ is a valid reduc-
tion, and hence INE is undecidable, because PCP is undecidable. So, INE is RE
and not co-RE. ■

3. Consider
AMBIGUOUS = {G | G is an ambiguous CFG}

Is AMBIGUOUS RE? Is it co-RE?
Hint: You may use the fact that PCP is RE but not co-RE.

Solution. I claim that AMBIGUOUS is RE but not co-RE. To prove that AMBIGU-
OUS is RE, we can give an easy description of a TM accepting AMBIGUOUS. So
letK be a TM that does the following on input G:

(1) K enumerates each natural number n ∈ N one by one on a separate
tape.

(2) For eachnatural numbernenumerated,K thenfindsall left-mostderiva-
tions of length n in G and writes the derivations on a separate tape,
where each derivation is separated by a delimiter like #. For each of
these derivations,K then checks whether the derivation derives a word
of Σ∗, and if it does then K writes this word on a separate tape. Each of
these words written will be separated by a delimiter like #.

(3) K then goes through each of thewrittenwords, and checkswhether two
words are the same. If they are, then K accepts. Otherwise, K erases
everything and goes back to step (1).

It is clear that this TM K accepts the language AMBIGUOUS. So, AMBIGUOUS
is RE.
Next, wewill show that AMBIGUOUS is undecidable by reducingPCP to it. This

will automatically show that AMBIGUOUS is not co-RE, since we have already
shown that it is RE. The reduction is as follows. Let the input (u1, v1), ..., (uk, vk)
to PCP be given. Then, consider the following grammar.

S → A | B
A → u1A1 | u2A2 | ... | ukAk | u11 | u22 | ... | ukk

B → v1B1 | v2B2 | ... | vkBk | v11 | v22 | ... | vkk

By the nature of the productions, it is clear that

L(S) = {ua1ua2 ...uananan−1...a1 | a1...an ∈ {1, ..., k}∗ \ {ϵ}}
∪

{va1va2 ...vananan−1...a1 | a1...an ∈ {1, ..., k}∗ \ {ϵ}}



4 SIDDHANT CHAUDHARY BMC201953

Moreover, observe that the only ambiguity in S comes from the production S →
A | B. Now, suppose there is a PCP solution to the input (u1, v1), ..., (uk, vk). So,
there is some a1...an ∈ {1, ..., k}∗ \ {ϵ} such that

ua1 ...uan = va1 ...van

which implies that
ua1 ...uanan...a1 = va1 ...vanan...a1

and hence the word ua1 ...uanan...a1 has two distinct left-most derivations in the
grammar S, i.e S is ambiguous. Conversely, if S is ambiguous, then there is
some a1...an ∈ {1, ..., k}∗ \ {ϵ} such that

ua1 ...uanan...a1 = va1 ...vanan...a1

because this word will have two left-most derivations, and the only difference
will be the choice between S → A and S → B. Hence, it follows that there is a
PCP solution to the input (u1, v1), ..., (uk, vk). What we have shown is that

(u1, v1), ..., (un, vn) ∈ PCP ⇐⇒ S ∈ AMBIGUOUS
so this is a valid reduction. Because PCP is undecidable, it follows that AM-
BIGUOUS is undecidable as well. So, we conclude that AMBIGUOUS is RE but
not co-RE. ■


	1
	2
	3

