TOC PROBLEM SET-14

SIDDHANT CHAUDHARY
BMC201953

1. Consider

FINITENESS $=\{\langle M\rangle \mid L(M)$ is finite $\}$
Is FINITENESS RE? Is it co-RE?
Solution. We will show that FINITENESS is neither RE nor co-RE by reducing the language HALT to the languages FINITENESS and FINITENESS. This will do our job, because we already know that HALT is not RE, since HALT is RE and undecidable.

First, let us reduce HALT to FINITENESS, i.e we show HALT \leq FINITENESS. Let M_{0} be any Turing Machine such that $L\left(M_{0}\right)=\phi$, and hence $M_{0} \in$ FINITENESS. We will now describe our computable function σ. Suppose a word $\langle M\rangle \# w$ is given. If either $\langle M\rangle$ is not a valid encoding of a Turing Machine, or if w is not a valid encoding of a word over M^{\prime} s input alphabet, then we put $\sigma(\langle M\rangle \# w)=$ M_{0} (notice that in this case it is clear that $\langle M\rangle \# w \in$ HALT, and that is why we mapped it to M_{0}). So, suppose the encoding $\langle M\rangle \# w$ is valid. We construct a TM $\sigma(\langle M\rangle \# w)=N_{M, w}$ that does the following (M and w are hard-wired in the encoding $N_{M, w}$)
(1) On an input $y, N_{M, w}$ ignores y completely.
(2) $N_{M, w}$ then writes the word w on its tape.
(3) Finally, $N_{M, w}$ simulates the machine M on the word $w . N_{M, w}$ accepts if M halts on w.
Observe that if M halts on w, then $L\left(N_{M, w}\right)=\Sigma^{*}$. Moreover, if M does not halt on w, then $L\left(N_{M, w}\right)=\phi$. Clearly, Σ^{*} is infinite and ϕ is finite. So from the above, it follows that

$$
\langle M\rangle \# w \in \overline{\mathrm{HALT}} \Longleftrightarrow N_{M, w} \in \text { FINITE }
$$

Thus, σ is a valid reduction, and this shows that FINITENESS is not RE.
Next, we reduce $\overline{\text { HALT }}$ to FINITENESS, i.e we show $\overline{\text { HALT }} \leq \overline{\text { FINITNESS. The }}$ idea here will be a little more involved. Let M_{1} be any Turing Machine accepting the language Σ^{*}. We will now describe our computable function σ. So, suppose the word $\langle M\rangle \# w$ is given. As before, if either $\langle M\rangle$ is not a valid encoding of a Turing Machine, or if w is not a valid encoding of a word over M^{\prime} s input alphabet, then we put $\sigma(\langle M\rangle \# w)=M_{1}$ (notice that in this case it is true that $\langle M\rangle \# w \in \overline{\text { HALT }}$, and that is why we mapped it to M_{1}). So, suppose the encoding $\langle M\rangle \# w$ is valid. We construct a TM $\sigma(\langle M\rangle \# w)=N_{M, w}$ that does the following (and as before, M and w are hard-wired in the encoding $N_{M, w}$)
(1) On input $y, N_{M, w}$ writes y on a separate tape.
(2) On another tape, $N_{M, w}$ simulates the machine M on the word w for $|y|$ steps. The machine $N_{M, w}$ accepts y if M does not halt on w within $|y|$ steps, otherwise it rejects.

Now observe the following. If M halts on w, then we see that
$L\left(N_{M, w}\right)=$ all words of length less than the halting time of M on w
i.e $L\left(N_{M, w}\right)$ is finite. On the other hand, if M does not halt on w, then

$$
L\left(N_{M, w}\right)=\Sigma^{*}
$$

which is infinite. So we have shown that

$$
\langle M\rangle \# w \in \overline{\mathrm{HALT}} \Longleftrightarrow N_{M, w} \in \overline{\text { FINITENESS }}
$$

Thus, σ is a valid reduction, and this shows that FINITENESS is not RE either. This completes the solution.
2. Consider the following problem discussed in class, known as Intersection Non-Emptiness for CFGs.

$$
\mathrm{INE}=\left\{\left(G_{1}, G_{2}\right) \mid G_{1}, G_{2} \text { are CFGs, } L\left(G_{1}\right) \cap L\left(G_{2}\right) \neq \phi\right\}
$$

Is INE RE? Is it co-RE?
Solution. It is easy to see that INE is RE. We can give an easy description of a TM K that accepts the language INE. We can have a Turing Machine K that enumerates words of Σ^{*} one-by-one in length-lexicographic order, and for each enumerated word w, K checks whether $w \in L\left(G_{1}\right)$ and $w \in L\left(G_{2}\right)$ using the CYK algorithm. It is then clear that K accepts the language INE, however K is not a total Turing Machine.

We will now show that the language INE is actually undecidable by reducing PCP to it (PCP:Post's Correspondence Problem), i.e we will show that

$$
\mathrm{PCP} \leq \mathrm{INE}
$$

Because PCP is undecidable, this will show that INE is undecidable, and therefore this will show that INE is not co-RE because above we have shown that it is RE .

Here is the reduction (recall that in PCP, the input is pairs $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{k}, v_{k}\right)$ of words). Suppose we are given the input $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{k}, v_{k}\right)$. Our computable function σ will be as follows. Let $\sigma\left(\left(u_{1}, v_{1}\right), \ldots,\left(u_{k}, v_{k}\right)\right)=\left(G_{1}, G_{2}\right)$, where G_{1} is the CFG

$$
S \rightarrow 1 S u_{1}\left|2 S u_{2}\right| \ldots\left|k S u_{k}\right| 1 u_{1}\left|2 u_{2}\right| \ldots \mid k u_{k}
$$

and G_{2} is the CFG

$$
T \rightarrow 1 T v_{1}\left|2 T v_{2}\right| \ldots\left|k T v_{k}\right| 1 v_{1}\left|2 v_{2}\right| \ldots \mid k v_{k}
$$

It is easy to see that

$$
\begin{aligned}
& L\left(G_{1}\right)=\left\{a_{1} a_{2} \ldots a_{n} u_{a_{n}} u_{a_{n-1}} \ldots u_{a_{1}} \mid a_{1} a_{2} \ldots a_{n} \in\{1, \ldots, k\}^{*} \backslash\{\epsilon\}\right\} \\
& L\left(G_{2}\right)=\left\{a_{1} a_{2} \ldots a_{n} v_{a_{n}} v_{a_{n-1}} \ldots v_{a_{1}} \mid a_{1} a_{2} \ldots a_{n} \in\{1, \ldots, k\}^{*} \backslash\{\epsilon\}\right\}
\end{aligned}
$$

and this can be easily seen by the nature of productions of the given grammars.
Now, I will show that

$$
\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{n}, v_{n}\right) \in \mathrm{PCP} \Longleftrightarrow L\left(G_{1}\right) \cap L\left(G_{2}\right) \neq \phi
$$

First, suppose there is a PCP solution to this input, i.e there is some word $a_{1} a_{2} \ldots a_{n} \in$ $\{1, \ldots, k\}^{*} \backslash\{\epsilon\}$ such that

$$
u_{a_{1}} u_{a_{2}} \ldots u_{a_{n}}=v_{a_{1}} v_{a_{2}} \ldots v_{a_{n}}
$$

Then, we have

$$
a_{n} a_{n-1} \ldots a_{1} u_{a_{1}} u_{a_{2}} \ldots u_{a_{n}}=a_{n} a_{n-1} \ldots a_{1} v_{a_{1}} v_{a_{2}} \ldots v_{a_{n}} \in L\left(G_{1}\right) \cap L\left(G_{2}\right)
$$

so that $L\left(G_{1}\right) \cap L\left(G_{2}\right) \neq \phi$. Conversely, suppose $L\left(G_{1}\right) \cap L\left(G_{2}\right) \neq \phi$. So, there is some word $a_{1} a_{2} \ldots a_{n} \in\{1, \ldots, k\}^{*} \backslash\{\epsilon\}$ such that

$$
a_{1} a_{2} \ldots a_{n} u_{a_{n}} u_{a_{n-1}} \ldots u_{a_{1}}=a_{1} a_{2} \ldots a_{n} v_{a_{n}} v_{a_{n-1}} \ldots v_{a_{1}}
$$

So, we see that

$$
u_{a_{n}} u_{a_{n-1}} \ldots u_{a_{1}}=v_{a_{n}} v_{a_{n-1}} \ldots v_{a_{1}}
$$

and hence $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right), \ldots,\left(u_{n}, v_{n}\right)$ has a PCP solution. So, σ is a valid reduction, and hence INE is undecidable, because PCP is undecidable. So, INE is RE and not co-RE.

3. Consider

$$
\text { AMBIGUOUS }=\{G \mid G \text { is an ambiguous CFG }\}
$$

Is AMBIGUOUS RE? Is it co-RE?
Hint: You may use the fact that PCP is RE but not co-RE.
Solution. I claim that AMBIGUOUS is RE but not co-RE. To prove that AMBIGUOUS is RE, we can give an easy description of a TM accepting AMBIGUOUS. So let K be a TM that does the following on input G :
(1) K enumerates each natural number $n \in \mathbb{N}$ one by one on a separate tape.
(2) For each natural number n enumerated, K then finds all left-most derivations of length n in G and writes the derivations on a separate tape, where each derivation is separated by a delimiter like \#. For each of these derivations, K then checks whether the derivation derives a word of Σ^{*}, and if it does then K writes this word on a separate tape. Each of these words written will be separated by a delimiter like \#.
(3) K then goes through each of the written words, and checks whether two words are the same. If they are, then K accepts. Otherwise, K erases everything and goes back to step (1).
It is clear that this TM K accepts the language AMBIGUOUS. So, AMBIGUOUS is RE .

Next, we will show that AMBIGUOUS is undecidable by reducing PCP to it. This will automatically show that AMBIGUOUS is not co-RE, since we have already shown that it is RE. The reduction is as follows. Let the input $\left(u_{1}, v_{1}\right), \ldots,\left(u_{k}, v_{k}\right)$ to PCP be given. Then, consider the following grammar.

$$
\begin{aligned}
& S \rightarrow A \mid B \\
& A \rightarrow u_{1} A 1\left|u_{2} A 2\right| \ldots\left|u_{k} A k\right| u_{1} 1\left|u_{2} 2\right| \ldots \mid u_{k} k \\
& B \rightarrow v_{1} B 1\left|v_{2} B 2\right| \ldots\left|v_{k} B k\right| v_{1} 1\left|v_{2} 2\right| \ldots \mid v_{k} k
\end{aligned}
$$

By the nature of the productions, it is clear that

$$
\begin{aligned}
L(S)=\{ & \left.u_{a_{1}} u_{a_{2}} \ldots u_{a_{n}} a_{n} a_{n-1} \ldots a_{1} \mid a_{1} \ldots a_{n} \in\{1, \ldots, k\}^{*} \backslash\{\epsilon\}\right\} \\
\cup & \\
& \left\{v_{a_{1}} v_{a_{2}} \ldots v_{a_{n}} a_{n} a_{n-1} \ldots a_{1} \mid a_{1} \ldots a_{n} \in\{1, \ldots, k\}^{*} \backslash\{\epsilon\}\right\}
\end{aligned}
$$

Moreover, observe that the only ambiguity in S comes from the production $S \rightarrow$ $A \mid B$. Now, suppose there is a PCP solution to the input $\left(u_{1}, v_{1}\right), \ldots,\left(u_{k}, v_{k}\right)$. So, there is some $a_{1} \ldots a_{n} \in\{1, \ldots, k\}^{*} \backslash\{\epsilon\}$ such that

$$
u_{a_{1}} \ldots u_{a_{n}}=v_{a_{1}} \ldots v_{a_{n}}
$$

which implies that

$$
u_{a_{1} \ldots u_{a_{n}}} a_{n} \ldots a_{1}=v_{a_{1} \ldots v_{a_{n}}} a_{n} \ldots a_{1}
$$

and hence the word $u_{a_{1}} \ldots u_{a_{n}} a_{n} \ldots a_{1}$ has two distinct left-most derivations in the grammar S, i.e S is ambiguous. Conversely, if S is ambiguous, then there is some $a_{1} \ldots a_{n} \in\{1, \ldots, k\}^{*} \backslash\{\epsilon\}$ such that

$$
u_{a_{1}} \ldots u_{a_{n}} a_{n} \ldots a_{1}=v_{a_{1}} \ldots v_{a_{n}} a_{n} \ldots a_{1}
$$

because this word will have two left-most derivations, and the only difference will be the choice between $S \rightarrow A$ and $S \rightarrow B$. Hence, it follows that there is a PCP solution to the input $\left(u_{1}, v_{1}\right), \ldots,\left(u_{k}, v_{k}\right)$. What we have shown is that

$$
\left(u_{1}, v_{1}\right), \ldots,\left(u_{n}, v_{n}\right) \in \mathrm{PCP} \Longleftrightarrow S \in \text { AMBIGUOUS }
$$

so this is a valid reduction. Because PCP is undecidable, it follows that AMBIGUOUS is undecidable as well. So, we conclude that AMBIGUOUS is RE but not co-RE.

