TOC PROBLEM SET-14

SIDDHANT CHAUDHARY BMC201953

1. Consider

FINITENESS = { $\langle M \rangle \mid L(M)$ is finite}

Is FINITENESS RE? Is it co-RE?

Solution. We will show that FINITENESS is neither RE nor co-RE by reducing the language HALT to the languages FINITENESS and FINITENESS. This will do our job, because we already know that HALT is *not* RE, since HALT is RE and undecidable.

First, let us reduce $\overline{\text{HALT}}$ to FINITENESS, i.e we show $\overline{\text{HALT}} \leq \text{FINITENESS}$. Let M_0 be any Turing Machine such that $L(M_0) = \phi$, and hence $M_0 \in \text{FINITENESS}$. We will now describe our computable function σ . Suppose a word $\langle M \rangle \# w$ is given. If either $\langle M \rangle$ is not a valid encoding of a Turing Machine, or if w is not a valid encoding of a word over M's input alphabet, then we put $\sigma(\langle M \rangle \# w) = M_0$ (notice that in this case it is clear that $\langle M \rangle \# w \in \text{HALT}$, and that is why we mapped it to M_0). So, suppose the encoding $\langle M \rangle \# w$ is valid. We construct a TM $\sigma(\langle M \rangle \# w) = N_{M,w}$ that does the following (M and w are hard-wired in the encoding $N_{M,w}$)

- (1) On an input y, $N_{M,w}$ ignores y completely.
- (2) $N_{M,w}$ then writes the word w on its tape.
- (3) Finally, $N_{M,w}$ simulates the machine M on the word w. $N_{M,w}$ accepts if M halts on w.

Observe that if M halts on w, then $L(N_{M,w}) = \Sigma^*$. Moreover, if M does not halt on w, then $L(N_{M,w}) = \phi$. Clearly, Σ^* is infinite and ϕ is finite. So from the above, it follows that

$$\langle M \rangle \# w \in \overline{\mathsf{HALT}} \iff N_{M,w} \in \mathsf{FINITE}$$

Thus, σ is a valid reduction, and this shows that FINITENESS is not RE.

Next, we reduce HALT to FINITENESS, i.e we show HALT \leq FINITNESS. The idea here will be a little more involved. Let M_1 be any Turing Machine accepting the language Σ^* . We will now describe our computable function σ . So, suppose the word $\langle M \rangle \# w$ is given. As before, if either $\langle M \rangle$ is not a valid encoding of a Turing Machine, or if w is not a valid encoding of a word over M's input alphabet, then we put $\sigma(\langle M \rangle \# w) = M_1$ (notice that in this case it is true that $\langle M \rangle \# w \in$ HALT, and that is why we mapped it to M_1). So, suppose the encoding $\langle M \rangle \# w$ is valid. We construct a TM $\sigma(\langle M \rangle \# w) = N_{M,w}$ that does the following (and as before, M and w are hard-wired in the encoding $N_{M,w}$)

- (1) On input y, $N_{M,w}$ writes y on a separate tape.
- (2) On another tape, $N_{M,w}$ simulates the machine M on the word w for |y| steps. The machine $N_{M,w}$ accepts y if M does not halt on w within |y| steps, otherwise it rejects.

Date: November 2020.

Now observe the following. If M halts on w, then we see that

 $L(N_{M,w}) =$ all words of length less than the halting time of M on w

i.e $L(N_{M,w})$ is finite. On the other hand, if M does not halt on w, then

$$L(N_{M,w}) = \Sigma^*$$

which is infinite. So we have shown that

$$\langle M \rangle \# w \in \overline{\mathsf{HALT}} \iff N_{M,w} \in \overline{\mathsf{FINITENESS}}$$

Thus, σ is a valid reduction, and this shows that **FINITENESS** is *not* RE either. This completes the solution.

2. Consider the following problem discussed in class, known as Intersection Non-Emptiness for CFGs.

 $INE = \{(G_1, G_2) \mid G_1, G_2 \text{ are CFGs}, L(G_1) \cap L(G_2) \neq \phi\}$

Is INE RE? Is it co-RE?

Solution. It is easy to see that INE is RE. We can give an easy description of a TM K that accepts the language INE. We can have a Turing Machine K that enumerates words of Σ^* one-by-one in length-lexicographic order, and for each enumerated word w, K checks whether $w \in L(G_1)$ and $w \in L(G_2)$ using the CYK algorithm. It is then clear that K accepts the language INE, however K is not a total Turing Machine.

We will now show that the language INE is actually undecidable by reducing PCP to it (PCP:Post's Correspondence Problem), i.e we will show that

 $\mathsf{PCP} \leq \mathsf{INE}$

Because PCP is undecidable, this will show that INE is undecidable, and therefore this will show that INE is *not* co-RE because above we have shown that it is RE.

Here is the reduction (recall that in PCP, the input is pairs $(u_1, v_1), (u_2, v_2), ..., (u_k, v_k)$ of words). Suppose we are given the input $(u_1, v_1), (u_2, v_2), ..., (u_k, v_k)$. Our computable function σ will be as follows. Let $\sigma((u_1, v_1), ..., (u_k, v_k)) = (G_1, G_2)$, where G_1 is the CFG

 $S \rightarrow 1Su_1 \mid 2Su_2 \mid \ldots \mid kSu_k \mid 1u_1 \mid 2u_2 \mid \ldots \mid ku_k$

and G_2 is the CFG

 $T \rightarrow 1Tv_1 \mid 2Tv_2 \mid \ldots \mid kTv_k \mid 1v_1 \mid 2v_2 \mid \ldots \mid kv_k$

It is easy to see that

$$L(G_1) = \{a_1 a_2 \dots a_n u_{a_n} u_{a_{n-1}} \dots u_{a_1} \mid a_1 a_2 \dots a_n \in \{1, \dots, k\}^* \setminus \{\epsilon\}\}$$
$$L(G_2) = \{a_1 a_2 \dots a_n v_{a_n} v_{a_{n-1}} \dots v_{a_1} \mid a_1 a_2 \dots a_n \in \{1, \dots, k\}^* \setminus \{\epsilon\}\}$$

and this can be easily seen by the nature of productions of the given grammars. Now, I will show that

$$(u_1, v_1), (u_2, v_2), \dots, (u_n, v_n) \in \mathsf{PCP} \iff L(G_1) \cap L(G_2) \neq \phi$$

First, suppose there is a PCP solution to this input, i.e there is some word $a_1a_2...a_n \in \{1,...,k\}^* \setminus \{\epsilon\}$ such that

$$u_{a_1}u_{a_2}...u_{a_n} = v_{a_1}v_{a_2}...v_{a_n}$$

Then, we have

$$a_n a_{n-1} \dots a_1 u_{a_1} u_{a_2} \dots u_{a_n} = a_n a_{n-1} \dots a_1 v_{a_1} v_{a_2} \dots v_{a_n} \in L(G_1) \cap L(G_2)$$

so that $L(G_1) \cap L(G_2) \neq \phi$. Conversely, suppose $L(G_1) \cap L(G_2) \neq \phi$. So, there is some word $a_1a_2...a_n \in \{1,...,k\}^* \setminus \{\epsilon\}$ such that

$$a_1a_2...a_nu_{a_n}u_{a_{n-1}}...u_{a_1} = a_1a_2...a_nv_{a_n}v_{a_{n-1}}...v_{a_1}$$

So, we see that

 $u_{a_n}u_{a_{n-1}}...u_{a_1} = v_{a_n}v_{a_{n-1}}...v_{a_1}$

and hence $(u_1, v_1), (u_2, v_2), ..., (u_n, v_n)$ has a PCP solution. So, σ is a valid reduction, and hence INE is undecidable, because PCP is undecidable. So, INE is RE and not co-RE.

3. Consider

 $\mathsf{AMBIGUOUS} = \{G \mid G \text{ is an ambiguous CFG}\}$

Is AMBIGUOUS RE? Is it co-RE? **Hint:** You may use the fact that PCP is RE but not co-RE.

Solution. I claim that AMBIGUOUS is RE but not co-RE. To prove that AMBIGU-OUS is RE, we can give an easy description of a TM accepting AMBIGUOUS. So let K be a TM that does the following on input G:

- (1) K enumerates each natural number $n \in \mathbb{N}$ one by one on a separate tape.
- (2) For each natural number n enumerated, K then finds all *left-most* derivations of length n in G and writes the derivations on a separate tape, where each derivation is separated by a delimiter like #. For each of these derivations, K then checks whether the derivation derives a word of Σ^* , and if it does then K writes this word on a separate tape. Each of these words written will be separated by a delimiter like #.
- (3) K then goes through each of the written words, and checks whether two words are the same. If they are, then K accepts. Otherwise, K erases everything and goes back to step (1).

It is clear that this TM K accepts the language AMBIGUOUS. So, AMBIGUOUS is RE.

Next, we will show that AMBIGUOUS is undecidable by reducing PCP to it. This will automatically show that AMBIGUOUS is *not* co-RE, since we have already shown that it is RE. The reduction is as follows. Let the input $(u_1, v_1), ..., (u_k, v_k)$ to PCP be given. Then, consider the following grammar.

$$\begin{split} S &\to A \mid B \\ A &\to u_1 A1 \mid u_2 A2 \mid ... \mid u_k Ak \mid u_1 1 \mid u_2 2 \mid ... \mid u_k k \\ B &\to v_1 B1 \mid v_2 B2 \mid ... \mid v_k Bk \mid v_1 1 \mid v_2 2 \mid ... \mid v_k k \end{split}$$

By the nature of the productions, it is clear that

$$L(S) = \{ u_{a_1} u_{a_2} \dots u_{a_n} a_n a_{n-1} \dots a_1 \mid a_1 \dots a_n \in \{1, \dots, k\}^* \setminus \{\epsilon\} \}$$
$$\cup$$
$$\{ v_{a_1} v_{a_2} \dots v_{a_n} a_n a_{n-1} \dots a_1 \mid a_1 \dots a_n \in \{1, \dots, k\}^* \setminus \{\epsilon\} \}$$

Moreover, observe that the only ambiguity in S comes from the production $S \rightarrow A \mid B$. Now, suppose there is a PCP solution to the input $(u_1, v_1), ..., (u_k, v_k)$. So, there is some $a_1...a_n \in \{1, ..., k\}^* \setminus \{\epsilon\}$ such that

$$u_{a_1}...u_{a_n} = v_{a_1}...v_{a_n}$$

which implies that

$$u_{a_1}...u_{a_n}a_n...a_1 = v_{a_1}...v_{a_n}a_n...a_1$$

and hence the word $u_{a_1}...u_{a_n}a_n...a_1$ has two distinct left-most derivations in the grammar S, i.e S is ambiguous. Conversely, if S is ambiguous, then there is some $a_1...a_n \in \{1,...,k\}^* \setminus \{\epsilon\}$ such that

$$u_{a_1}...u_{a_n}a_n...a_1 = v_{a_1}...v_{a_n}a_n...a_1$$

because this word will have two left-most derivations, and the only difference will be the choice between $S \rightarrow A$ and $S \rightarrow B$. Hence, it follows that there is a PCP solution to the input $(u_1, v_1), ..., (u_k, v_k)$. What we have shown is that

$$(u_1, v_1), ..., (u_n, v_n) \in \mathsf{PCP} \iff S \in \mathsf{AMBIGUOUS}$$

so this is a valid reduction. Because PCP is undecidable, it follows that AM-BIGUOUS is undecidable as well. So, we conclude that AMBIGUOUS is RE but not co-RE.