
TOC PROBLEM SET-2

SIDDHANT CHAUDHARY
BMC201953

Problem 1. Prove that if a DFA A with n states accepts a word of lengthm ≥ n,
then its language will be infinite. Borrowing the idea from the previous proof,
show that if w ∈ L(A) where A is a DFA with n states and |w| ≥ n, then w can
be partitioned as w = xyz with y ̸= ϵ such that xykz ∈ L(A) for all k ∈ N. This is
called the pumping lemma (Infact, we can partitionw in such away that |xy| ≤ n)
Solution: LetA = (Q,Σ, δ, F,Q0) be a DFAwith |Q| = n such that there is some

word w with |w| ≥ n that is accepted by A. Suppose the word w is
w = a1a2...a|w|

where ai ∈ Σ for each 1 ≤ i ≤ |w| and suppose the accepting run is

q0
a1−→ q1

a2−→ ...
a|w|−−→ q|w|

(where the qis are not necessarily distinct). By the pigeon-hole principle, there
are indices 0 ≤ i < j ≤ |w| such that qi = qj (this is because |w| ≥ n, and in this
run we have |w|+ 1 > n states). Then, let the word w be written as

w = xyz

where x is the substring of w occuring in the run from q0 to qi, y is the substring
of w occuring in the run from qi to qj (and y ̸= ϵ because i < j), and similarly z
is the substring occuring in the run from qj to q|w|. Then, it is easy to see that if
k ∈ N, xykz will always be accepted, because the runwill end at state q|w| (which
is a final state). This also shows that the language of A will be infinite, hence
completing the proof.

Problem2. AreDFAswith only one final state as powerful 1 as thosewith two fi-
nal states? Prove or give a counterexample. What can you say about the power
of the DFAs with k final states and those with k + 1 final states? Justify. Does
the same hold for an NFA?
Solution: Let Σ = {1}, i.e there is only one letter in the alphabet. Let k ∈ N,

and define
Ck := {L ⊂ Σ∗|L is accepted by some DFA with k final states}
Ck+1 := {L ⊂ Σ∗|L is accepted by some DFA with k + 1 final states}

We will show that Ck is a proper subset of Ck+1, and this will show that DFAs
with k + 1 final states are more powerful than those with k final states. First,
supposeL ∈ Ck, that isL is a language accepted by someDFAwith k final states.
To this DFA, add a garbage state, make it final, and let all transitions coming out

Date: August 2020.
1Anautomaton is said to bemore powerful than another if the language accepted by the second
is a proper subset of the language accepted by the first.

1

2 SIDDHANT CHAUDHARY BMC201953

of this state be self loops. Then, we have found a DFA with k+1 final states that
accepts L, so that Ck ⊂ Ck+1.
To show that the inclusion is strict, consider the following example. We de-

sign a DFA that accepts precisely those words that have length atmost k, i.e the
words can have length only in {0, 1, ..., k}. Suppose q0 is an initial state. Clearly,
q0 is a final state. Let (q0, 1, q) be a transition. Then, q ̸= q0, otherwise all words
will be accepted, so put q = q1. Also, observe that q1 is a final state, because the
word 1 must be accepted (k ≥ 1). Continuing this process k times, we see that
the only DFA that accepts this language is the following DFA:

q0 q1 q2 qk dead
1 1 11, states in between

1

(Between q2 and qk there aremore final states). Clearly, we require atleast k+1
final states. Hence, the inclusion is proper. Also, note that this example works
over any alphabet, since we are only interested in the length and not the letters
of a word.
I think the same does not hold true in an NFA , strictly because of the fact that

ϵ-transitions between final states can exist. I will try to come up with a proof of
this.

Problem 3. Prove that swapping the final and non-final states in a DFA A gives
us a DFA that recognizes the complement of L(A).
A finite state automaton is said to be an incomplete DFA if for each state q

there is atmost one transition on each a ∈ Σ. Prove (or disprove) that the above
holds for an incomplete DFA.
Solution: Let A be a DFA, and let B be the DFA obtained by swapping the final

and non-final states of A. We will show that L(B) = L(A)c, where the comple-
ment is taken inside the set Σ∗. Here is the important observation. If w is any
word in Σ∗ and if

q0
w−→ qf

is the run of w in A, then this is also the run of w in B, and vice-versa. This is
true because the initial state and the transitions are the same in A and B.
Now, suppose w ∈ L(B), and let the the run be

q0
w−→ qf

where qf is a final state in B. By what we showed above, this is the run of w
in A is well, but in A, qf is not a final state in A, and hence w /∈ L(A), implying
w ∈ L(A)c. This shows L(B) ⊂ L(A). To show the reverse inclusion, suppose
w ∈ L(A)c, which means w /∈ L(A), and hence qf is not a final state in A. The run
of w inB will be the same as that inA, but inB, qf will be a final state, and hence
w ∈ L(B). This shows L(A)c ⊂ L(B). So, L(B) = L(A)c, completing the proof.
The same proof works for incomplete DFAs as well, because of the same ob-

servation: the run in both the incomplete DFAs will be the same, but the last
state in one DFA would be final, while in the other DFA it won’t be final. (This is
wrong, try to figure out why.)

TOC PROBLEM SET-2 3

Problem 4. Is the language
L = {x#y| x, y ∈ {0, 1}∗, (x)2 + (y)2 is divisible by 3}

recognizable? If yes, give a DFA/NFA, otherwise justify.
Solution: Yes, this language is recognizable, and we give a DFA for it. We

assume that strings of the form x# and #y are acceptible if 3|(x)2 and 3|(y)2. In
PSET-1, we designed a DFA to checkwhether a binary number string is divisible
by 3. Here, the basic idea is as follows: we keep scanning until we hit a # (if we
don’t, we don’t accept the string), and while scanning, we keep track of the first
number modulo 3 (which is (x)2). If a # is scanned, we start over again, and
we keep track of the second number modulo 3 (which is (y)2), starting from the
residue of (x)2 modulo 3. The final states are those ones which have a residue
of 0 modulo 3. All dead states are not final, and have self-loops corresponding
to every symbol in the alphabet.

0, 0

1, 0 0, 1

1, 1

1, 2 0, 2

0, 0

0, 1

0, 2

1, 0 0, 1

1, 1

1, 2 0, 2

1, 1 0, 2

1, 2

0, 01, 0

1, 2 0, 0

1, 0

1, 1 0, 1

dead

dead

dead

0

1

0

1

0

1

#

#
#

#

#

0

1

0

1

0

1

0

1

0

1

01

0

1

0

1

01

#
#

#

#
#

#
#

#

#
#

#

#
#

#

#
#

#

#

Note: If strings of the form x# and #y are not accepted, we can fix the above
automaton pretty easily.

Problem5. The classical Sudoku is a 9×9 grid that has nine 3×3 sub-grids. The
goal of the game is to fill the digits from 0 to 9 such that each of the row, column
and the nine 3× 3 sub-grids have all the digits from 0 to 9. A filled Sudoku that
satisfies these constraints is said to be correctly filled.
LetS beacompletely filledSudoku (whether correctly filledornot), and flatten(S)

be the flattened version of the Sudoku obtained by concatenating all the nine
rows of S one after another (preserving the order) to form a string over Σ =
{1, 2, ..., 9}.

4 SIDDHANT CHAUDHARY BMC201953

Is it possible to construct a DFA A which only accepts the words w over Σ =
{1, 2, ..., 9} that are flattening of some correctly filled 9× 9 Sudokum i.e

L(A) = {w ∈ Σ∗|∃S such that flatten(S) = w}
Solution(Incomplete): For this problem, I have the following conjecture:

Regular languages are closed under intersection
If this conjecture is false, then this strategy won’t work. If this is true, then we
only need to design three FAs to: (1) check that no two numbers in a row are the
same, (2) check that no two numbers in a column are the same and (3) check
that no two numbers in the same 3 × 3 block are the same. And then, combine
these three to a single one, which will be the required FA (we know that ϵ-NFAs
are equivalent to DFAs, so it is enough to make an ϵ-NFA). I think designing DFAs
for these three tasks individually is definitely possible. (Update: this is a finite
language, and hence must be regular.)

	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5

