TOC PROBLEM SET-3

SIDDHANT CHAUDHARY
BMC201953

1. Write rational expressions for the following languages.
(a) The set of strings over $\Sigma=\{a, b, c\}$ containing atleast one a and atleast one b. We just need to ensure that there our string has $a b$ or $b a$ as a subsequence, which can be achieved as follows.
$\left[(a \cup b \cup c)^{*} \cdot a \cdot(a \cup b \cup c)^{*} \cdot b \cdot(a \cup b \cup c)^{*}\right] \cup\left[(a \cup b \cup c)^{*} \cdot b \cdot(a \cup b \cup c)^{*} \cdot a \cdot(a \cup b \cup c)^{*}\right]$
(b) The set of strings of 0 's and 1's with at most one pair of consecutive 1's. First, we find a rational expression for the language consisting of all words not containing consecutive 1's and not starting with a 1 . This language has the expression

$$
E_{0}=\left(0^{*} \cdot(\epsilon \cup 01) \cdot 0^{*}\right)^{*}
$$

Then, the expression for the language consisting of all words not containing consecutive 1's and starting with 1 is

$$
E_{1}=1 \cdot E_{0}
$$

So we see that

$$
E=E_{0} \cup E_{1}
$$

is the expression for the language consisting of all words which don't have consecutive 1's. So, the expression for the required language is

$$
E \cup\left[((E \cdot 0) \cup \epsilon) \cdot 1 \cdot 1 \cdot E_{0}\right]
$$

(c) Strings of 0 s and 1 s which do not contain 101 as a substring. This expression is easy to construct. Note that a 1 can only be followed by a 1 or 00 or a 0 in the case where the string ends with a 10 . So, the rational expression is given below.

$$
0^{*} \cdot\left(1^{*} \cdot 0 \cdot 0 \cdot 0^{*}\right)^{*} \cdot 1^{*} \cdot 0^{*}
$$

The part $1^{*} \cdot 0^{*}$ of this expression handles the boundary case where a string ends with a 10.
2. For each of the rational expressions obtained in the previous problem, construct an NFA accepting the corresponding rational language.

Solution: To be completed.
3. Let the rotational closure of a language L be given as

$$
\operatorname{ROC}(L)=\{y x \mid x y \in L\}
$$

Show that the set of recognizable languages is closed under rotational closure, and $\operatorname{ROC}(L)=\operatorname{ROC}(\operatorname{ROC}(L))$.

Solution: I was a bit lazy to write this solution. This link has a good explanation.
4. Suppose $K, L \subset\{a, b\}^{*}$ are languages such that K does not contain the empty word. Show that $X=K^{*} L$ is the unique solution of the equation

$$
X=K X+L
$$

where X is an unknown language.
Bonus: What can you say about X if K contains the empty word?
Solution: First, we show that for any such $X, K^{*} L \subset X$. So let $y \cdot l \in K^{*} L$, where $y \in K^{*}$ and $l \in L$. If $y=\epsilon$, then clearly $y \cdot l=l \in X$, because L is a subset of X. If $y \neq \epsilon$, then $y=y_{1} y_{2} \ldots y_{p}$ where $y_{i} \in K$ for each $1 \leq i \leq p$. Then, observe that $l \in X$, which implies that $y_{p} \cdot l \in X$, which implies that $y_{p-1} y_{p} \cdot l \in X$, and continuing this way p times we see that $y_{1} y_{2} \ldots y_{p} \cdot l=y \cdot l \in X$. Hence, $K^{*} L \subset X$.

Next, we show that $X \subset K^{*} L$, by induction on the length of the word taken in X. For the base case, let $x \in X$ such that the length of x is 0 , i.e $x=\epsilon$. Since K does not contain the empty word, we have that $x \in L$. There are two cases: if $\epsilon \in L$, then in this case, $\epsilon \in K^{*} L$ is true. If $\epsilon \notin L$, then there is no such x, and hence the base case is vacuously true.

For the inductive case, suppose $x \in X$ and $|x| \leq m \Longrightarrow x \in K^{*} L$. Let $x \in X$ be such that $|x|=m+1$. If $x \in L$, then $x \in K^{*} L$, and hence we are done. So, suppose $x \notin L$. Hence, $x \in K X$, so that

$$
x=k \cdot x_{1}
$$

where $k \in K$ and $x_{1} \in X$ is such that $|x| \leq m$. By our hypothesis, $x_{1} \in K^{*} L$, and hence $x=k \cdot x_{1} \in K^{*} L$, completing the proof that $X \subset K^{*} L$. So, we have shown that $X=K^{*} L$ is the unique solution to the given equation.

Now, if K contains ϵ, then we have the following claim.
Any X such that $K^{*} L \subset X$ is a solution to the given equation.
I didn't have time to write a proof for this, but the arguments are very similar to the ones given above.
5. Let L be any language. Define $\operatorname{DROPOUT}(L)$ as

$$
\operatorname{DROPOUT}(L):=\left\{x z \mid x y z \in L, y \in \Sigma, x, z \in \Sigma^{*}\right\}
$$

Show that the set of regular languages is closed under the DROPOUT operation.
Solution: Let M be a DFA accepting L. We make an ϵ-NFA N as follows. Put two copies of M, say M_{1} and M_{2} next to each other, and let the initial state be the initial state of M_{1}, and let the final states be the final states of M_{2}. The transitions in M_{1} and M_{2} remain the same, and we add more ϵ-transitions as follows. If $q_{1} \xrightarrow{s} q_{2}$ is a transition in M, add $q_{1} \xrightarrow{\epsilon} q_{2}$ where q_{1} is the copy in M_{1} and q_{2} is the copy in M_{2}. Then, we claim that exactly those words are accepted which have exactly one letter dropped. If a word is accepted, it must have gone through an ϵ-transition (because the final states reside in M_{2}), and hence it has exactly one letter dropped. Conversely, if there is a word which is of the form $x z$ with $x y z \in L$ and $y \in \Sigma$, then we can drop the letter y by going through a suitable ϵ transition. Hence, the class of regular languages is closed under the DROPOUT operation.

