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1. Given an alphabetΣ = {a1, a2, ..., ak} , show that any DFA that accepts the lan-
guage L = {w| w does not contain all the letters from Σ} has atleast 2k states.

Bonus: What can you say about the minimum number of words required for
an NFA?
Solution: We will show that the language L has 2k distinct quotients, and

hence it will follow that any DFA accepting L must contain atleast 2k distinct
states.
To show this, suppose A,B are two distinct subsets of Σ. Because they are

distinct, one contains an element that is not in the other, i.e suppose wlog that

A−B ̸= ϕ

Let w1 be a word formed by using all letters in A exactly once, and let w2 be a
word formed by using all letters in B exactly once (as we will see, the order in
which the letters are used is not significant). We will show that

w−1
1 L ̸= w−1

2 L

Consider Ac, and let w3 be a word formed by using all letters of Ac exactly once
(w3 can be the empty word). Then, observe that

w2w3 ∈ L

because w2w3 does not contain any word from the set A−B. This shows that

w3 ∈ w−1
2 L

However, observe that w1w3 /∈ L, because all letters of Σ are present in this
word. So,

w3 /∈ w−1
1 L

and hence
w−1

1 L ̸= w−1
2 L

Now, there are 2k possible distinct subsets of Σ, this proves the claim.
We can provide a simple bound for NFAs as well. Suppose M is an NFA ac-

cepting L containing l states. Using the subset construction, we can form a DFA
out ofM , which will contain 2l states. By what we have shown,

2l ≥ 2k

and hence l ≥ k. So, any NFA must contain atleast k states.
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2. Construct an NFA for the language L of all words over Σ = {a, b} such that
the number of a′s and the number of b′s appearing in the word are both even.
Using this NFA, give a rational expression for L.
Solution: We will construct a DFA and convert the same into a rational ex-

pression. We maintain four states, each state labeled by an ordered pair (x, y),
where, x, y ∈ {0, 1}. The first coordinate represents the number of a′s modulo 2
and the y coordinate represents the number of b′s modulo 2. So, the DFA is the
following (where the red state is the final state).

Figure 1. (0, 0) is both the initial and the final state

Now, we eliminate the state (1, 1), and get the following GNFA.

Next, we eliminate the state (1, 0) and get the following GNFA.

Using this GNFA, we get that the regular expression for the language is
[(a(bb)∗a)∗ + (b+ a(bb)∗ba)(aa+ ab(bb)∗ba)∗(b+ ab(bb)∗a)]∗

Note: Just like in the lecture on GNFAs, I have assumed that in GNFAs, the
initial state can also be the final state, and that transitions are allowed to start
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at the final state and go into the initial state. I mention this here because this is
opposite to the definition given in the fourth problem.

3. The Dyck language L is the set of all balanced strings of square brackets,
i.e it is a language over the alphabet Σ = {[, ]} such that for any word u ∈ L,
the number of [′s and ]′s are equal and for any prefix of u, the number of [′s is
greater than or equal to the number of ]′s. Show that the Dyck language is not
regular.
Solution: We show that L has infinitely many quotients, thereby proving that

L is not regular.
For any n ∈ N, put

[n= [[[[...[ (n times)
We claim that if n ̸= m, then

([n)−1L ̸= ([m)−1(L)

which will complete the proof.
So suppose n ̸= m, and without loss of generality suppose n < m. Then,

observe that
[n·]n ∈ L

which means that ]n ∈ ([n)−1L. However, observe that
[m·]n /∈ L

because n < m, and hence ]n /∈ ([m)−1L. Hence, it follows that these two quo-
tients are different, and hence it shows that L has infinitely many quotients.

4. A generalised NFA(GNFA) is similar to NFAs except in the fact that it has a
single initial state i, a single final state f (i and f are distinct) and its transition
function δ is of the following form

δ : (Q− {f}) → (Q− {i}) → R

where R is the set of rational expressions over Σ. Prove that the class of lan-
guages recognized by GNFAs is the same for NFAs.
Solution: First, let L be a language recognized by DFA. We do the following:

add a new state to the DFA, and make it initial, and put an epsilon transition
from this state to the old initial state. This ensures that the initial state is not
the final state anymore. Also, add a new state, make it final, and add epsilon
transitions from all old final states to this one. This ensures that there is only
one initial state and only one final state (and that they are distinct). Next, by
state elimination, we obtain a GNFA recognizing L.
Conversely, suppose there is a GNFA recognizing some language L. We show

how to convert this GNFA to an ϵ-NFA, and that will complete the proof. Note
that regular expressions are composed only of the operations+, · and ∗. So we
showhow to break down each operation. Suppose in the GNFA, there is an edge
of the form

q1
e1+e2−−−→ q2

Then, we add two new states to the GNFA say q and q′, remove this transition,
and add the following transitions:

q1
ϵ−→ q

e1−→ q2

q1
ϵ−→ q′

e2−→ q2
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Next, if there is an edge of the form

q1
e1·e2−−→ q2

then we add a new state q to the GNFA, remove this transition, and add the fol-
lowing transitions

q1
e1−→ q

e2−→ q2

Finally, if there is an edge of the form

q1
(e)∗−−→ q2

we add a new state q to the GNFA, remove this transition, and add the following
transitions

q1
ϵ−→ q

e−→ q
ϵ−→ q2

i.e, we add a self-loop. We keep repeating this process untill all expressions
reduce to single letter expressions. Note that, at every stage, wearepreserving
the language that is recognized. So, after a finite number of these operations,
we get an NFA accepting L. This completes the proof.

5. The set of star-free languages S over an alphabet Σ is defined as the small-
est set of languages such that it contains the single-ton languages ({a} for all
a ∈ Σ), ϕ and is closed under union, concatenation, and complementation.

(1) Is Σ∗ star-free?
(2) Is a∗ star free? Justify.
(3) Is (ab)∗ star free? Justify.
Solution:
(1) Observe that ϕ is star-free, and since star free languages are closed

under complementation, it follows that Σ∗ = (ϕ)c is also star-free.
(2) Yes, a∗ is star free. Suppose the alphabet is

Σ = {a1, a2, a3, ..., ak}
and suppose a = a1. Observe that (a∗)c is the language consisting of all
words which contain atleast one letter from {a2, a3, ..., ak}. So, we can
write

(a∗)c = (Σ∗ · a2 · Σ∗) ∪ (Σ∗ · a3 · Σ∗) ∪ ... ∪ (Σ∗ · ak · Σ∗)

Now, Σ∗ is star-free, and by using the fact that this set is closed under
concatenation, we see that

Σ∗ · ai · Σ∗

is star-free for every 2 ≤ i ≤ k. So, (a∗)c being a finite union of star-free
languages is star-free, and hence a∗ is star-free.

(3) Yes, (ab)∗ is also star-free. First, because this set is closed under com-
plementation, it is also closed under intersection by De-Morgan’s Law.
By part (2),

{ϵ} = a∗ ∩ b∗

is also star-free. Now, let L1 be the language of all words that start with
a. Observe that

Lc
1 = ϵ ∪ (Σ− {a}) · Σ∗
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Now, Σ∗ is star free, and Σ − {a}, being finite, is also star free. We have
just seen that ϵ is star-free. So, Lc

1 is also star free, and hence L1 is star
free. Next, let L2 be the set of all languages that end with a b. We have

Lc
2 = ϵ ∪ Σ∗ · (Σ− {b})

and by similar reasoning as above, we have that Lc
2 is also star free. Let

L3 be the language of all words that do not contain aa. Now,
Lc
3 = Σ∗ · aa · Σ∗

and hence Lc
3 is star-free, implying that L3 is star free. Similarly, le L4 be

the language of all words that do not contain bb. So, L4 is also star free.
Finally, observe that

(ab)∗ = ϵ ∪ (L1 ∩ L2 ∩ L3 ∩ L4)

and hence (ab)∗ is star free, since only finite intersections are involved.
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