TOC PROBLEM SET-5

SIDDHANT CHAUDHARY BMC201953

1. Let A be a DFA with n states that accept a word of length $\ge n$, prove that it accepts a word of length m where $n \le m < 2n$.

Solution: Let w be a word that A accepts, and suppose $|w| = m' \ge n$. If $n \le m' < 2n$, then we are done. So, we assume that $m' \ge 2n$. We first show that

$$w = xyz$$

where $0 < |y| \le n$ such that xz is also accepted by \mathcal{A} . Let $w = a_1 a_2 \dots a_{m'}$, and let

$$q_0 \xrightarrow{a_1} q_1 \xrightarrow{a_2} \dots \xrightarrow{a'_m} q_m$$

be an accepting run for *a*. Now, $q_0, ...q_{m'}$ are $m' + 1 \ge 2n$ states. So by the pigeonhole principle, there are $0 \le i < j \le m'$ such that $q_i = q_j$. Now, let *x* be the word in the run $q_0 \xrightarrow{x} q_i$, *y* be the run $q_i \xrightarrow{y} q_j$ and let *z* be the run $q_j \xrightarrow{z} q_{m'}$. Since $i \ne j$, |y| > 0, and we can write

$$w = xyz$$

and observe that xz is acceptable, since the run is

$$q_0 \xrightarrow{x} q_i \xrightarrow{z} q'_m$$

Now, let y be such a word of minimal length. We claim that $0 < |y| \le n$. If |y| > n was true, then we could apply the pigeonhole principle in the run for y again, obtaining a smaller such y, a contradiction.

Finally, because $0 < |y| \le n$, observe that

$$n' > |xz| = |xyz| - |y| \ge m' - n \ge n$$

and hence we have found a *smaller word* of size $\geq n$ that is accepted by A. So, unless the length of the word is less than 2n, we can keep repeating this process, until we get a word whose length is in the range [n, 2n). This completes the proof.

2. Are the following languages regular or not? Explain each answer with proof.

(a) $L = \{0^k u 0^k | k \in \mathbb{N}, u \in \{0, 1\}\}^*$. We show that this language is regular. We claim that *L* is that set of all those words which start and end with a zero. To see this, suppose *w* is any such word. Consider the largest prefix of *w* which only contains 0's, and consider the largest suffix of *w* that only contains 0's. Let *k* be the minimum of the lengths of this prefix and suffix. so that k > 0. So, *w* is of the form

$$0^k u 0^k$$

and hence $w \in L$. Conversely, if $w = 0^k u 0^k$ for some $u \in \{0, 1\}^*$ and k > 0, then w starts and ends with a 0. So, L is described by the regular expression

$$00^*(0+1)^*0^*0$$

Date: September 2020.

so that *L* is regular.

(b) $L = \{1^k y | k \in \mathbb{N}, y \in \{0, 1\}^* \text{ and } y \text{ has } \geq k \text{ 1's}\}$. We show that L is regular in this case as well. We claim that L is the set of all words that start with a 1 and contain atleast two 1's. First, suppose $w \in L$, so that $w = 1^k y$ for k >0, and where $|y|_1 \geq k$. Clearly, w starts with a 1 and contains atleast two 1's. Conversely, suppose w starts with a 1 and contains atleast two 1's. So,

w = 1y

where y contains atleast one 1, and hence $w \in L$. So, the regular expression for L is

$$L = 1(0+1)^* 1(0+1)^*$$

and hence L is regular.

3. Minimise the following DFAs using partition refinement.

Solution: We refer to the images given in the problem set.

(a) Observe that q_1 and q_2 cannot be merged, because starting at q_1 , the word a is accepted, but the same is not true for q_2 . For the same reason, q_2 and q_3 cannot be merged. However, q_2 and q_3 can be merged together, and the result of merging is the following.

(b) We claim that the given DFA is already the minimal DFA. q_1 and q_2 cannot be merged, because starting at $q_1 a$ is accepted, but the same is not true for q_2 . For the same reason, q_1, q_3 and q_1, q_4 cannot be merged.

 q_2,q_4 and q_3,q_4 cannot be merged because q_4 is a final state, and hence accepts $\epsilon.$

Finally, q_2 and q_3 cannot be merged because starting at q_3 , ba is accepted, but the same is not true for q_2 . Hence, the given DFA is already isomorphic to the Nerode DFA.

Update: This technique, though it works, it not partition refinement.

4. Construct Nerode automata for $L_1 = a(abb)^* + b$ and $L_2 = (a + b^*)a^*b^*$.

Solution: Since both languages are written using regular expressions, they are regular. So, they have finitely many quotients. To compute the Nerode Automata, we compute the quotients of *L*. Here, we use the formula

$$(uv)^{-1}L = v^{-1}(u^{-1}L)$$

(a) $L = a(abb)^* + b$. We have the following:

$$\epsilon^{-1}L_1 = L_1$$

$$a^{-1}L_1 = (abb)^*$$

$$b^{-1}L_1 = \epsilon$$

$$(aa)^{-1}L_1 = bb \cdot a^{-1}L_1$$

$$(ab)^{-1}L_1 = (ba)^{-1}L_1 = (bb)^{-1}L_1 = \phi$$

$$(aab)^{-1}L_1 = b \cdot a^{-1}L_1$$

and it is easy to see that these are all the quotients. The Nerode Automaton for L_1 is given below (the leftmost state is the starting state).

(b) $L_2 = (a + b^*)a^*b^*$. We follow the same approach as above.

$$\epsilon^{-1}L_2 = L_2$$

$$a^{-1}L_2 = a^*b^*$$

$$b^{-1}L_2 = b^*a^*b^*$$

$$(aa)^{-1}L_2 = a^*b^*$$

$$(ab)^{-1}L_2 = b^*$$

$$(ba)^{-1}L_2 = a^*b^*$$

$$(bb)^{-1}L_2 = b^*a^*b^*$$

$$(aba)^{-1}L_2 = \phi$$

and again it is seen that all quotients of L_2 have been enumerated. So, the Nerode Automaton for L_2 is given below.

Update: This automaton is *not* minimal. Observe that $(a + b^*)a^*b^* = b^*a^*b^*$.

- **5.** Prove that for each n > 0, a language B_n exists where
 - (1) B_n is recognizable by an NFA that has n states, and
 - (2) if $B_n = A_1 \cup ... \cup A_k$ for regular languages A_i , then atleast one of the A_i requires a DFA with atleast $2^{\lfloor n/k \rfloor}$ states.

Solution: Let n > 0, and let $\Sigma = \{a_1, ..., a_n\}$ be an alphabet containing n letters. Let

 $L = \{w | w \text{ does not contain all the letters from } \Sigma\}$

In PSET-4 problem 1, I showed that any DFA accepting L requires atleast 2^n states. We now construct an NFA with n states that accepts L.

Make n states, say q_i for $1 \le i \le n$. Each q_i is initial, and each q_i has n - 1 self loops, the only missing self loop being the one with label a_i . Also, each state is final. It is clear that this NFA accepts all those words which don't contain all letters.

Now, suppose

$$B_n = A_1 \cup \ldots \cup A_k$$

where each A_i is a regular language. For the sake of contradiction, suppose the minimal DFA required for A_i has r_i states, where

$$r_i < 2^{\lfloor n/k \rfloor}$$

for each $1 \le i \le k$. So, we can construct a DFA for the language $A_1 \cup ... \cup A_k$ using the cartesian product of these DFAs. The number of states in the cartesian product will be

$$r_1 r_2 \dots r_k < (2^{\lfloor n/k \rfloor})^k \le 2^n$$

which contradicts the fact that the minimal DFA required for B_n contains atleast 2^n states. So, there is atleast one *i* for which $r_i \ge 2^{\lfloor n/k \rfloor}$, completing the proof.