# TOC PROBLEM SET-5 

SIDDHANT CHAUDHARY

BMC201953

1. Let $\mathcal{A}$ be a DFA with $n$ states that accept a word of length $\geq n$, prove that it accepts a word of length $m$ where $n \leq m<2 n$.

Solution: Let $w$ be a word that $\mathcal{A}$ accepts, and suppose $|w|=m^{\prime} \geq n$. If $n \leq m^{\prime}<2 n$, then we are done. So, we assume that $m^{\prime} \geq 2 n$. We first show that

$$
w=x y z
$$

where $0<|y| \leq n$ such that $x z$ is also accepted by $\mathcal{A}$. Let $w=a_{1} a_{2} \ldots a_{m^{\prime}}$, and let

$$
q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} \ldots \xrightarrow{a_{m}^{\prime}} q_{m^{\prime}}
$$

be an accepting run for $a$. Now, $q_{0}, \ldots q_{m^{\prime}}$ are $m^{\prime}+1 \geq 2 n$ states. So by the pigeonhole principle, there are $0 \leq i<j \leq m^{\prime}$ such that $q_{i}=q_{j}$. Now, let $x$ be the word in the run $q_{0} \xrightarrow{x} q_{i}, y$ be the run $q_{i} \xrightarrow{y} q_{j}$ and let $z$ be the run $q_{j} \xrightarrow{z} q_{m^{\prime}}$. Since $i \neq j,|y|>0$, and we can write

$$
w=x y z
$$

and observe that $x z$ is acceptable, since the run is

$$
q_{0} \xrightarrow{x} q_{i} \xrightarrow{z} q_{m}^{\prime}
$$

Now, let $y$ be such a word of minimal length. We claim that $0<|y| \leq n$. If $|y|>n$ was true, then we could apply the pigeonhole principle in the run for $y$ again, obtaining a smaller such $y$, a contradiction.

Finally, because $0<|y| \leq n$, observe that

$$
m^{\prime}>|x z|=|x y z|-|y| \geq m^{\prime}-n \geq n
$$

and hence we have found a smaller word of size $\geq n$ that is accepted by $\mathcal{A}$. So, unless the length of the word is less than $2 n$, we can keep repeating this process, until we get a word whose length is in the range $[n, 2 n)$. This completes the proof.
2. Are the following languages regular or not? Explain each answer with proof.
(a) $L=\left\{0^{k} u 0^{k} \mid k \in \mathbb{N}, u \in\{0,1\}\right\}^{*}$. We show that this language is regular. We claim that $L$ is that set of all those words which start and end with a zero. To see this, suppose $w$ is any such word. Consider the largest prefix of $w$ which only contains 0 's, and consider the largest suffix of $w$ that only contains 0 's. Let $k$ be the minimum of the lengths of this prefix and suffix. so that $k>0$. So, $w$ is of the form

$$
0^{k} u 0^{k}
$$

and hence $w \in L$. Conversely, if $w=0^{k} u 0^{k}$ for some $u \in\{0,1\}^{*}$ and $k>0$, then $w$ starts and ends with a 0 . So, $L$ is described by the regular expression

$$
00^{*}(0+1)^{*} 0^{*} 0
$$

so that $L$ is regular.
(b) $L=\left\{1^{k} y \mid k \in \mathbb{N}, y \in\{0,1\}^{*}\right.$ and $y$ has $\geq k 1$ 's $\}$. We show that $L$ is regular in this case as well. We claim that $L$ is the set of all words that start with a 1 and contain atleast two $1^{\prime}$ s. First, suppose $w \in L$, so that $w=1^{k} y$ for $k>$ 0 , and where $|y|_{1} \geq k$. Clearly, $w$ starts with a 1 and contains atleast two 1 's. Conversely, suppose $w$ starts with a 1 and contains atleast two 1 's. So,

$$
w=1 y
$$

where $y$ contains atleast one 1 , and hence $w \in L$. So, the regular expression for $L$ is

$$
L=1(0+1)^{*} 1(0+1)^{*}
$$

and hence $L$ is regular.
3. Minimise the following DFAs using partition refinement.

Solution: We refer to the images given in the problem set.
(a) Observe that $q_{1}$ and $q_{2}$ cannot be merged, because starting at $q_{1}$, the word $a$ is accepted, but the same is not true for $q_{2}$. For the same reason, $q_{2}$ and $q_{3}$ cannot be merged. However, $q_{2}$ and $q_{3}$ can be merged together, and the result of merging is the following.

(b) We claim that the given DFA is already the minimal DFA. $q_{1}$ and $q_{2}$ cannot be merged, because starting at $q_{1} a$ is accepted, but the same is not true for $q_{2}$. For the same reason, $q_{1}, q_{3}$ and $q_{1}, q_{4}$ cannot be merged.
$q_{2}, q_{4}$ and $q_{3}, q_{4}$ cannot be merged because $q_{4}$ is a final state, and hence accepts $\epsilon$.

Finally, $q_{2}$ and $q_{3}$ cannot be merged because starting at $q_{3}, b a$ is accepted, but the same is not true for $q_{2}$. Hence, the given DFA is already isomorphic to the Nerode DFA.

Update: This technique, though it works, it not partition refinement.
4. Construct Nerode automata for $L_{1}=a(a b b)^{*}+b$ and $L_{2}=\left(a+b^{*}\right) a^{*} b^{*}$.

Solution: Since both languages are written using regular expressions, they are regular. So, they have finitely many quotients. To compute the Nerode Automata, we compute the quotients of $L$. Here, we use the formula

$$
(u v)^{-1} L=v^{-1}\left(u^{-1} L\right)
$$

(a) $L=a(a b b)^{*}+b$. We have the following:

$$
\begin{aligned}
\epsilon^{-1} L_{1} & =L_{1} \\
a^{-1} L_{1} & =(a b b)^{*} \\
b^{-1} L_{1} & =\epsilon \\
(a a)^{-1} L_{1} & =b b \cdot a^{-1} L_{1} \\
(a b)^{-1} L_{1} & =(b a)^{-1} L_{1}=(b b)^{-1} L_{1}=\phi \\
(a a b)^{-1} L_{1} & =b \cdot a^{-1} L_{1}
\end{aligned}
$$

and it is easy to see that these are all the quotients. The Nerode Automaton for $L_{1}$ is given below (the leftmost state is the starting state).

(b) $L_{2}=\left(a+b^{*}\right) a^{*} b^{*}$. We follow the same approach as above.

$$
\begin{aligned}
\epsilon^{-1} L_{2} & =L_{2} \\
a^{-1} L_{2} & =a^{*} b^{*} \\
b^{-1} L_{2} & =b^{*} a^{*} b^{*} \\
(a a)^{-1} L_{2} & =a^{*} b^{*} \\
(a b)^{-1} L_{2} & =b^{*} \\
(b a)^{-1} L_{2} & =a^{*} b^{*} \\
(b b)^{-1} L_{2} & =b^{*} a^{*} b^{*} \\
(a b a)^{-1} L_{2} & =\phi
\end{aligned}
$$

and again it is seen that all quotients of $L_{2}$ have been enumerated. So, the Nerode Automaton for $L_{2}$ is given below.

5. Prove that for each $n>0$, a language $B_{n}$ exists where
(1) $B_{n}$ is recognizable by an NFA that has $n$ states, and
(2) if $B_{n}=A_{1} \cup \ldots \cup A_{k}$ for regular languages $A_{i}$, then atleast one of the $A_{i}$ requires a DFA with atleast $2^{\lfloor n / k\rfloor}$ states.
Solution: Let $n>0$, and let $\Sigma=\left\{a_{1}, \ldots, a_{n}\right\}$ be an alphabet containing $n$ letters. Let

$$
L=\{w \mid w \text { does not contain all the letters from } \Sigma\}
$$

In PSET-4 problem 1, I showed that any DFA accepting $L$ requires atleast $2^{n}$ states. We now construct an NFA with $n$ states that accepts $L$.

Make $n$ states, say $q_{i}$ for $1 \leq i \leq n$. Each $q_{i}$ is initial, and each $q_{i}$ has $n-1$ self loops, the only missing self loop being the one with label $a_{i}$. Also, each state is final. It is clear that this NFA accepts all those words which don't contain all letters.

Now, suppose

$$
B_{n}=A_{1} \cup \ldots \cup A_{k}
$$

where each $A_{i}$ is a regular language. For the sake of contradiction, suppose the minimal DFA required for $A_{i}$ has $r_{i}$ states, where

$$
r_{i}<2^{\lfloor n / k\rfloor}
$$

for each $1 \leq i \leq k$. So, we can construct a DFA for the language $A_{1} \cup \ldots \cup A_{k}$ using the cartesian product of these DFAs. The number of states in the cartesian product will be

$$
r_{1} r_{2} \ldots r_{k}<\left(2^{\lfloor n / k\rfloor}\right)^{k} \leq 2^{n}
$$

which contradicts the fact that the minimal DFA required for $B_{n}$ contains atleast $2^{n}$ states. So, there is atleast one $i$ for which $r_{i} \geq 2^{\lfloor n / k\rfloor}$, completing the proof.

