
TOC PROBLEM SET-6

SIDDHANT CHAUDHARY
BMC201953

Problem1. Construct context-free grammar for the following languages. Jus-
tify.

L1 = {w ∈ {a, b, c}∗|w|a = |w|b + |w|c}
L2 = {aibjck|i+ k = j}

Solution: For L1, the grammar is the following.
S → aSR | RSa | SS | ϵ
R → b | c

Observe that L2 is just the concatenation of the languages {anbn | n ≥ 0} and
{bncn | n ≥ 0}, and so the CFG may be constructed easily.

Problem 2. Given a language L, it’s reversal is defined as the language LR =
{wR|w ∈ L}, wherewR represents the reversal of thewordw. Prove that context-
free languages are closed under reversal.
Solution: Let L be a CFL, and we will show that LR is a CFL as well. The idea
is actually very simple. Suppose G = (N,Σ, P, S) is a CFG for L. Make a new
CFG G′ = (N,Σ, P ′, S), where the set of productions P ′ is as follows. For any
production X → α in P , add the production X → αR in P ′. In that case, it is
clear that L(G′) = LR, and this completes the proof.

Problem3. It was described in the lecture howone can construct a right linear
grammar for a regular language.

(1) Given a DFA A = (Q,Σ, δ, q0, F), describe a construction to generate a
left-linear grammar for the language accepted by A.

(2) Prove that a language generated by a right-linear (and left-linear) gram-
mar is regular.

Solution: First, let A be a DFA for a regular language. Let q0 be the initial state
of A. Let G a context-free grammar as follows. The set of non-terminals of G is
Q∪{S}, where S is any symbol not inQ. Let the starting non-terminal ofG be S.
The set of terminals of G is simply Σ. Finally, the set of productions P is given
by

P = {q0 → ϵ} ∪ {q′ → qa|q a−→ q′ ∈ δ} ∪ {S → q|q ∈ F}
So, in simple words, we add a production S → q for every final state q ∈ F , add
the production q0 → ϵ and productions q′ → qa for all transitions q

a−→ q′ in A.
Moreover, observe that G is a left-linear grammar. We claim that

L(G) = L(A)

Date: 25 September , 2020.
1

2 SIDDHANT CHAUDHARY BMC201953

which will show that L(A) is accepted by a left-linear grammar. First, suppose
w ∈ L(A), and let w = a1...ak. So, there is an accepting run

q0
a1−→ q1

a2−→ ...
ak−→ qk

where qk is a final state in A. So, the sequence of derivations
S → qk → qk−1ak → qk−2ak−1ak → ... → q0a1...ak → a1...ak

shows that w ∈ L(G). The fact that G accepts only those words which are in
L(A) is also clear, because the only way a sequence of derivations leads to a
word without a non-terminal is when the last derivation is of the form q0w → w,
and it is easy to see that in that case, w ∈ L(A). So, this construction generates
a left-linear grammar for a regular language. This completes the solution for
(1).
Now,weprove (2). LetGbea right-lineargrammar. Suppose thenon-terminals
of G are

N = {S1, ..., Sn}
where without loss of generality the starting non-terminal is S1. Now, we con-
struct a Finite AutomatonM as follows. Let the states ofM be N ∪ {qend} ∪ Q,
where qend /∈ N will be the only final state ofM , andQ contains additional states
which we will describe in a moment. Let the starting state ofM be S1, which is
the starting non-terminal ofG. Next, we describe the transitions inM . Suppose
there is a production

Si → wSj

for some 1 ≤ i, j ≤ n, and some word w ∈ Σ∗ (w = ϵ is possible). InM , we make
a w-path from the state Si to Sj by adding new states if needed (and these new
states will belong to Q). Next, if there is a production of the form

Si → w

for some word w ∈ Σ∗ (w = ϵ is possible), we add a w-path from Si to qend by
again adding additional states if needed (which will belong to Q). Transitions
in M correspond to productions in G , so it follows that L(M) = L(G). Hence,
it follows that L(G) is a regular language, since it is acceptable by an ϵ-NFA,
namelyM .
Next, we consider the case where G is a left-linear grammar. Again, let the
non-terminals in G be

N = {S1, ..., Sn}
where the starting non-terminal is S1. We construct a Finite AutomatonM . Let
the states ofM be N ∪ {qinit} ∪ Q, where qinit /∈ N will be the only initial state of
M , and Q contains additional states which we will now describe. Let the only
final state ofM be S1. If there is a production

Si → Sjw

for some 1 ≤ i, j ≤ n and some word w ∈ Σ∗ (w = ϵ is possible), we make a
w-path from Sj to Si by adding new states if needed (and these new states will
belong to Q). Next, if there is a production of the form

Si → w

for some word w ∈ Σ∗ (w = ϵ is possible), we add a w-path from qinit to Si by
again adding additional states if needed. It is clear that L(G) = L(M), since

TOC PROBLEM SET-6 3

transitions correspond to productions, and hence L(G) is regular because it is
accepted by an ϵ-NFAM . This completes the proof of (2).

Problem 4. Let the language L1 = {w ∈ {a, b, c}∗|∀u · c ⊒ w, |u|a = |u|b}, where
v ⊒ w denotes that v is a prefix of w. In simple terms, L is the set of all those
wordswhose each prefix that endswith c has equal number of a′s and b′s. Show
that the language L1 is context free.
Solution: First, we make some quick observations. Let w ∈ L1. So, there are
two possibilities. Either w contains the letter c, or w ∈ {a, b}∗. If w contains the
letter c, consider the first occurrence of c in w. So, we can write

w = ucv

where u ∈ {a, b}∗ such that |u|a = |u|b and v ∈ L1. With this observation, we can
easily make a context free grammar G for L1. The grammar is given below.

S → S1cS | ϵ | S2

S1 → aS1b | bS1a | S1S1 | ϵ

S2 → aS2 | bS2 | ϵ

and here is the explanation. S is the starting non-terminal for G. From S, we
can either go to ϵ (the empty word), or we can generate a word purely in {a, b}∗
(which is carried out by using the non-terminal S2), or a word of the form ucv as
discussed above. It was proven in class that the grammar

S1 → aS1b | bS1a | S1S1 | ϵ

generates all wordsw ∈ {a, b}∗with |w|a = |w|b. This completes the construction
and shows that the given grammar accepts L1.

Problem 5. Show that the set of words w such that w is a palindrome and the
number of b′s in w is a multiple of 4 is a CFL.

L = {w|w = wR, |w|b is divisible by 4}

Solution: First, we make a couple of observations. Let w ∈ L. Observe that if
|w| is odd, then b cannot be the center letter of w (because the number of b′s,
being 0mod 4, is even). So in any case, b is not the central letter of w. If w starts
with an a, then

w = ava

for some palindrome v such that the number of b′s in v is 0 mod 4. If w starts
with a b, then

w = bvb

where v is a palindrome such that the number of b′s in v is 2mod 4. So keeping
these things in mind, we construct the following grammar G for L.

S → ϵ | a | aSa | bS ′b

S ′ → aS ′a | bSb

Here is the explanation. The non-terminal S ′ generates those palindromes in
which the number of b′s is 2 mod 4. The rest of the construction is clear from
the discussion above.

	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5

