TOC PROBLEM SET-6

SIDDHANT CHAUDHARY
BMC201953

Problem 1. Construct context-free grammar for the following languages. Justify.

$$
\begin{aligned}
& L_{1}=\left\{w \in\{a, b, c\}^{*}|w|_{a}=|w|_{b}+|w|_{c}\right\} \\
& L_{2}=\left\{a^{i} b^{j} c^{k} \mid i+k=j\right\}
\end{aligned}
$$

Solution: For L_{1}, the grammar is the following.

$$
\begin{aligned}
& S \rightarrow a S R|R S a| S S \mid \epsilon \\
& R \rightarrow b \mid c
\end{aligned}
$$

Observe that L_{2} is just the concatenation of the languages $\left\{a^{n} b^{n} \mid n \geq 0\right\}$ and $\left\{b^{n} c^{n} \mid n \geq 0\right\}$, and so the CFG may be constructed easily.
Problem 2. Given a language L, it's reversal is defined as the language $L^{R}=$ $\left\{w^{R} \mid w \in L\right\}$, where w^{R} represents the reversal of the word w. Prove that contextfree languages are closed under reversal.
Solution: Let L be a CFL, and we will show that L^{R} is a CFL as well. The idea is actually very simple. Suppose $G=(N, \Sigma, P, S)$ is a CFG for L. Make a new CFG $G^{\prime}=\left(N, \Sigma, P^{\prime}, S\right)$, where the set of productions P^{\prime} is as follows. For any production $X \rightarrow \alpha$ in P, add the production $X \rightarrow \alpha^{R}$ in P^{\prime}. In that case, it is clear that $L\left(G^{\prime}\right)=L^{R}$, and this completes the proof.

Problem 3. It was described in the lecture how one can construct a right linear grammar for a regular language.
(1) Given a DFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$, describe a construction to generate a left-linear grammar for the language accepted by A.
(2) Prove that a language generated by a right-linear (and left-linear) grammar is regular.
Solution: First, let A be a DFA for a regular language. Let q_{0} be the initial state of A. Let G a context-free grammar as follows. The set of non-terminals of G is $Q \cup\{S\}$, where S is any symbol not in Q. Let the starting non-terminal of G be S. The set of terminals of G is simply Σ. Finally, the set of productions P is given by

$$
P=\left\{q_{0} \rightarrow \epsilon\right\} \cup\left\{q^{\prime} \rightarrow q a \mid q \xrightarrow{a} q^{\prime} \in \delta\right\} \cup\{S \rightarrow q \mid q \in F\}
$$

So, in simple words, we add a production $S \rightarrow q$ for every final state $q \in F$, add the production $q_{0} \rightarrow \epsilon$ and productions $q^{\prime} \rightarrow q a$ for all transitions $q \xrightarrow{a} q^{\prime}$ in A. Moreover, observe that G is a left-linear grammar. We claim that

$$
L(G)=L(A)
$$

Date: 25 September, 2020.
which will show that $L(A)$ is accepted by a left-linear grammar. First, suppose $w \in L(A)$, and let $w=a_{1} \ldots a_{k}$. So, there is an accepting run

$$
q_{0} \xrightarrow{a_{1}} q_{1} \xrightarrow{a_{2}} \ldots \xrightarrow{a_{k}} q_{k}
$$

where q_{k} is a final state in A. So, the sequence of derivations

$$
S \rightarrow q_{k} \rightarrow q_{k-1} a_{k} \rightarrow q_{k-2} a_{k-1} a_{k} \rightarrow \ldots \rightarrow q_{0} a_{1} \ldots a_{k} \rightarrow a_{1} \ldots a_{k}
$$

shows that $w \in L(G)$. The fact that G accepts only those words which are in $L(A)$ is also clear, because the only way a sequence of derivations leads to a word without a non-terminal is when the last derivation is of the form $q_{0} w \rightarrow w$, and it is easy to see that in that case, $w \in L(A)$. So, this construction generates a left-linear grammar for a regular language. This completes the solution for (1).

Now, we prove (2). Let G be a right-linear grammar. Suppose the non-terminals of G are

$$
N=\left\{S_{1}, \ldots, S_{n}\right\}
$$

where without loss of generality the starting non-terminal is S_{1}. Now, we construct a Finite Automaton M as follows. Let the states of M be $N \cup\left\{q_{\text {end }}\right\} \cup Q$, where $q_{\text {end }} \notin N$ will be the only final state of M, and Q contains additional states which we will describe in a moment. Let the starting state of M be S_{1}, which is the starting non-terminal of G. Next, we describe the transitions in M. Suppose there is a production

$$
S_{i} \rightarrow w S_{j}
$$

for some $1 \leq i, j \leq n$, and some word $w \in \Sigma^{*}$ ($w=\epsilon$ is possible). In M, we make a w-path from the state S_{i} to S_{j} by adding new states if needed (and these new states will belong to Q). Next, if there is a production of the form

$$
S_{i} \rightarrow w
$$

for some word $w \in \Sigma^{*}\left(w=\epsilon\right.$ is possible), we add a w-path from S_{i} to $q_{\text {end }}$ by again adding additional states if needed (which will belong to Q). Transitions in M correspond to productions in G, so it follows that $L(M)=L(G)$. Hence, it follows that $L(G)$ is a regular language, since it is acceptable by an ϵ-NFA, namely M.
Next, we consider the case where G is a left-linear grammar. Again, let the non-terminals in G be

$$
N=\left\{S_{1}, \ldots, S_{n}\right\}
$$

where the starting non-terminal is S_{1}. We construct a Finite Automaton M. Let the states of M be $N \cup\left\{q_{\text {init }}\right\} \cup Q$, where $q_{\text {init }} \notin N$ will be the only initial state of M, and Q contains additional states which we will now describe. Let the only final state of M be S_{1}. If there is a production

$$
S_{i} \rightarrow S_{j} w
$$

for some $1 \leq i, j \leq n$ and some word $w \in \Sigma^{*}$ ($w=\epsilon$ is possible), we make a w-path from S_{j} to S_{i} by adding new states if needed (and these new states will belong to Q). Next, if there is a production of the form

$$
S_{i} \rightarrow w
$$

for some word $w \in \Sigma^{*}$ ($w=\epsilon$ is possible), we add a w-path from $q_{\text {init }}$ to S_{i} by again adding additional states if needed. It is clear that $L(G)=L(M)$, since
transitions correspond to productions, and hence $L(G)$ is regular because it is accepted by an ϵ-NFA M. This completes the proof of (2).

Problem 4. Let the language $L_{1}=\left\{w \in\{a, b, c\}^{*}\left|\forall u \cdot c \sqsupseteq w,|u|_{a}=|u|_{b}\right\}\right.$, where $v \sqsupseteq w$ denotes that v is a prefix of w. In simple terms, L is the set of all those words whose each prefix that ends with c has equal number of a^{\prime} s and b^{\prime} s. Show that the language L_{1} is context free.
Solution: First, we make some quick observations. Let $w \in L_{1}$. So, there are two possibilities. Either w contains the letter c, or $w \in\{a, b\}^{*}$. If w contains the letter c, consider the first occurrence of c in w. So, we can write

$$
w=u c v
$$

where $u \in\{a, b\}^{*}$ such that $|u|_{a}=|u|_{b}$ and $v \in L_{1}$. With this observation, we can easily make a context free grammar G for L_{1}. The grammar is given below.

$$
\begin{aligned}
S & \rightarrow S_{1} c S|\epsilon| S_{2} \\
S_{1} & \rightarrow a S_{1} b\left|b S_{1} a\right| S_{1} S_{1} \mid \epsilon \\
S_{2} & \rightarrow a S_{2}\left|b S_{2}\right| \epsilon
\end{aligned}
$$

and here is the explanation. S is the starting non-terminal for G. From S, we can either go to ϵ (the empty word), or we can generate a word purely in $\{a, b\}^{*}$ (which is carried out by using the non-terminal S_{2}), or a word of the form ucv as discussed above. It was proven in class that the grammar

$$
S_{1} \rightarrow a S_{1} b\left|b S_{1} a\right| S_{1} S_{1} \mid \epsilon
$$

generates all words $w \in\{a, b\}^{*}$ with $|w|_{a}=|w|_{b}$. This completes the construction and shows that the given grammar accepts L_{1}.
Problem 5. Show that the set of words w such that w is a palindrome and the number of $b^{\prime} s$ in w is a multiple of 4 is a CFL.

$$
L=\left\{w\left|w=w^{R},|w|_{b} \text { is divisible by 4 }\right\}\right.
$$

Solution: First, we make a couple of observations. Let $w \in L$. Observe that if $|w|$ is odd, then b cannot be the center letter of w (because the number of b 's, being 0 mod 4 , is even). So in any case, b is not the central letter of w. If w starts with an a, then

$$
w=a v a
$$

for some palindrome v such that the number of b^{\prime} s in v is $0 \bmod 4$. If w starts with a b, then

$$
w=b v b
$$

where v is a palindrome such that the number of b 's in v is $2 \bmod 4$. So keeping these things in mind, we construct the following grammar G for L.

$$
\begin{aligned}
S & \rightarrow \epsilon|a| a S a \mid \quad b S^{\prime} b \\
S^{\prime} & \rightarrow a S^{\prime} a \mid b S b
\end{aligned}
$$

Here is the explanation. The non-terminal S^{\prime} generates those palindromes in which the number of $b^{\prime} s$ is 2 mod 4 . The rest of the construction is clear from the discussion above.

