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Consider the following grammar G over the alphabet {a, b}.
S → aBS | bAS | ϵ

A → a | bAA

B → b | aBB

The first 3 questions use this grammar.

1. Prove that every word generated by G has equal number of a′s and b′s.

Solution. Suppose S
∗−→ α where α ∈ (N ∪ Σ)∗, where N is the set of non-

terminals of G. We will show that
|α|a + |α|A = |α|b + |α|B

by induction on the length of the derivation. For the base case, suppose the
length of the derivation is 0. The only possibility is that α = S, and clearly the
base case is true, because the word S does not contain any terminal or the
symbols A,B. So, suppose the statement is true for any derivation of length n,
and let

S
∗−→ α

be a derivation of length n+ 1, i.e suppose the derivation is

S
∗(n steps)−−−−−→ α′ −→ α

By the induction hypothesis, we know that
|α′|a + |α′|A = |α′|b + |α′|B

Now, suppose the step α′ → α involves one of the production S → aBS or
S → bAS or S → ϵ. Observe that, in either of these productions, we are al-
ways adding one of a,A and one of b, B, i.e in any of these productions, we have
the following two equations:

|α|a + |α|A = |α′|a + |α′|A + 1

|α|b + |α|B = |α′|b + |α′|B + 1

and hence in any case we see that
|α|a + |α|A = |α|b + |α|B

Now suppose the step α′ → α involves the production A → a. In that case, we
have

|α|a + |α|A = (|α′|a + 1) + (|α′|A − 1) = |α′|a + |α′|A
|α|b + |α|B = |α′|b + |α′|B
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and once again we see that
|α|a + |α|A = |α|b + |α|B

Next, suppose the step α′ → α involves the production A → bAA. In that case,
the equations we have are

|α|a + |α|A = |α′|a + |α′|A + 1

|α|b + |α|B = |α′|b + |α′|B + 1

and hence in this case as well we have
|α|a + |α|A = |α|b + |α|B

Finally, if the step α′ → α involves one of the productions B → b or B → aBB,
then we can apply the same argument as above. Hence, the induction proof is
complete. So, it follows that if the word α ∈ Σ∗ is generated by G, it will be true
that

|α|a + |α|A = |α|b + |α|B
which implies that |α|a = |α|b, because α cannot contain the non-terminalsA,B.
This proves the claim.

Before doing the next problem, I will prove the hint given in the footnotes, and
I will do this in two steps.

Lemma0.1. Letw ∈ {a, b}∗ be a non-empty word such that for every non-empty
prefix u of w,

|u|a > |u|b(†)
holds. Then, we show that there is a left-most derivation in G of the form

S
∗−→ wαS

where α is a sequence of |w|a − |wb| B′s. (An analogous statement holds for the
case |u|b > |u|a for every non-empty prefix u of w.)

Proof. If |w| = 1, then clearly w = a. Now, the derivation
S → aBS

does the job. So, we can assume that |w| > 1. Now, let u be a non-empty prefix
of w. We will show that there is a derivation of the form

S
∗−→ uαuS

where αu is a sequence of |u|a − |u|b B′s, and we will do so by induction on the
length of the prefix |u|. For the base case, suppose |u| = 1, i.e u is the first letter
of w. Clearly, it must be that u = a. In that case, consider the derivation

S → aBS = uαuS

and clearly the base case is true. Now, let u be a prefix of w of length > 1.
Suppose s is the last letter of u, so we canwrite u = u′s, where u′ is a non-empty
prefix of w. By our induction hypothesis, there is a derivation

S
∗−→ u′αu′S

(and this iswherewewill use the condition †) By the condition †, we know thatαu′

contains atleast one B, and hence there is a left-most B in αu′ . If s = a, then we
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expand the left most B as aBB (by using the production B → aBB), and hence
we will get

S
∗−→ u′αu′S

B→aBB−−−−−→ u′aBαu′S = uαuS

If s = b, then we expand the left most B as b (by using the production B → b),
and hence we will get

S
∗−→ u′αu′S

B→b−−−→ u′bαuS = uαuS

andhence,in any case, the required derivation hasbeen found. So, by induction,
we see that there is a left-most derivation of the form

S
∗−→ wαS

completing the proof of the claim. ■
Next, we will prove the hint in the footnotes.

Lemma0.2. Let w be any word in {a, b}∗. Then, there is a left-most derivation in
G of the form

S
∗−→ wαS

where α is as defined in Lemma 0.1.

Proof. We will prove this by induction on the length of w. For the base case,
|w| = 1. If w = a, then we have

S → aBS

and if w = b, we have
S → bAS

and hence the base |w| = 1 is true. Now, suppose the statement holds for all
words of length atmost n, and let w be a word of length n + 1. First, suppose
|w|a = |w|b, and hence α will be an empty word in this case. Let s be the last
letter of w, and let w = w′s, where w′ is non-empty. First, if s = a, then we have
w = w′a. Moreover, it must be true that |w′|b = |w′|a + 1, and clearly w′ is a
word of length atmost n. So, by the inductive hypothesis, we know that there is
a derivation

S
∗−→ w′AS

So, we can just do
S

∗−→ w′AS
A→a−−−→ w′aS = wS = wαS

and clearly, the case when s = b is analogous to this.
Next, suppose |w|a > |w|b (the case |w|b > |w|a) has an analogous proof). There

are three cases here, which we handle below.
(1) In the first case, suppose there is some non-empty prefix u of w with

|u|b > |u|a. Since |w|a > |w|b, it follows that there is some non-empty
prefix u′ of w with |u′|a = |u′|b. In that case, we can write w = u′v, where
v satisfies

|v|a > |v|b
and clearly, both u′, v have length atmost n. So, by induction hypothesis,
there are derivations S ∗−→ u′S and S

∗−→ vαvS, where αv is a sequence of
|v|a − |v|b B′s. Combining these, we have a derivation

S
∗−→ u′S

∗−→ u′vαvS = wαS

because clearly, αv = α, and this case is handled.
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(2) In the second case, there is some non-empty prefix u ofwwith |u|a = |u|b.
This case can be handled the same way as case (1).

(3) In this case, all non-empty prefixes u ofw satisfy |u|a > |u|b, and this case
reduces to Lemma 0.1. So, all the cases have been handled.

So, by induction, the lemma has been proven. ■

2. Prove that every word with equal number of a′s and b′s is derivable from S
to conclude that this is yet another grammar for the language of words with
equal number of a′s and b′s.

Solution. By Lemma 0.2, if w is a word with |w|a = |w|b, then there is a left-most
derivation of the form

S
∗−→ wS

Then, we can just do

S
∗−→ wS → w

and hence every such word w is derivable in G. So, by problems 1. and 2. we
conclude thatG is a grammar accepting all wordswith equal number of a′s and
b′s.

3. For the following, you need not prove the correctness of G.
(a)ModifyG to agrammarover {a, b, c} that accepts the language {w | vc prefix w then |v|a =
|v|b}.

Solution. It can be proven that any word w generated by B → b | aBB has the
property

|w|b = |w|a + 1

and an analogous statement hold for every word generated by A → a | bAA.
So, we modify the grammar as follows.

S → aBS | bAS | R | ϵ | cS

A → a | bAA

B → b | aBB

R → aR | bR | ϵ

wherewe have introduced the non-terminalR to handle the casewhere if there
are no c′s in the word, then it can be any word over {a, b}∗.

(b)ModifyG to agrammarover {a, b, c} that accepts the language {w | vc prefix w then |v|a ̸=
|v|b}.
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Solution. The modified grammar is the following.
S → S1 | S2S | R

S1 → aCB1 | bCA1

A1 → Ca | CbCA1CA1 | ϵ

B1 → Cb | CaCB1CB1 | ϵ

S2 → aCB2S2 | bCA2S2 | ϵ

A2 → Ca | CbCA2CA2

B2 → Cb | CaCB2CB2

C → c | cC | ϵ

R → aR | bR | ϵ

Now I will explain the reasoning behind this grammar. The start non-terminal
is S, and R is used for generating any random word over {a, b}∗. Any word in
L(G)must of of one of the following forms.

(1) The first form is this: let w be any word with equal a′s and b′s, and let
wcoll be w with some c′s embedded in w such that wcoll lies in L(G), and
also some letters of w collapsed to ϵ. For instance, let w = aaabbb, and let
wcoll = aaac, where all the b′s are collapsed. Words like this where col-
lapsing occurs are generated by using S1, which is a copy of the original
grammar with somemodifications. Note that, A1, B1 are allowed to go to
ϵ, because collapsing is allowed in this case.

(2) The second form is wncollw
′, where w′ ∈ L(G), and we explain wncoll. Let w

beanywordwith equal numberof a′s and b′s, and letwncoll bewwith some
c′s embeddedwith no collapsing. For example, if we usew = aaabbb, then
wncoll can be aaacbbb. Words of the form wncoll are generated using S2,
where S2 is another copy of S with some modifications. Note that A2, B2

are not allowed to go to ϵ here, because no collapsing is allowed in this
case.

Thenon-terminalC is used to embed c’swherever it canbeembedded (I couldn’t
figure out a simpler way of explaining this construction. Apologies for that.)
4. Describe a procedure that takes a context-free grammar G as input and
checks whether ϵ ∈ L(G).
Solution. Let N0 = ϵ, and we inductively define sets Ni for i ∈ N as follows.
Suppose N is the set of all non-terminals of G. Define

Ni = {x ∈ N | x −→ α, α ∈ {N0 ∪N1 ∪ ... ∪Ni−1}∗}
We show that

X
∗−→ ϵ ⇐⇒ X ∈ Ni , for some i ≥ 1(∗)

Suppose X ∈ N1, and clearly by the definition of N1, it is clear that X
∗−→ ϵ. Now

suppose X ∈ Ni implies X
∗−→ ϵ for every 1 ≤ i ≤ n, and let X ∈ Nn+1. By the

definition of Nn+1, we know that X → α, for some α ∈ {N0 ∪ N1 ∪ ... ∪ Nn}∗. If
α = ϵ, then we are done, i.eX ∗−→ ϵ. Otherwise, we know that each letter of α is a
non-terminal belonging to Nn (because N1 ⊆ N2 ⊆ ... ⊆ Nn, and that N0 = ϵ). By
our inductive hypothesis, we know that each non-terminal inNn can generate ϵ,
and hence it follows that α can generate ϵ. So again,X ∗−→ ϵ, and so by induction,
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one direction of (∗) is proven. To prove the other direction, suppose X
∗−→ ϵ for

some X ∈ N , and let T be the derivation tree, and clearly, every leaf of T is ϵ,
so that every leaf is in N0. Remove all leaves from T to get a new tree T ′. By
definition of N1, we see that every leaf of T ′ is in N1. We continue to remove
leaves this way, and hence it must be true that the root of T , which is X , is in
some Xi, for some i ∈ N. This completes the proof of (∗).
Finally, as we mentioned above, it is clear that N1 ⊆ N2 ⊆ ..., i.e the sets Ni

form an increasing chain of sets under inclusion. Moreover, the chain must be
eventually constant, because there are only finitelymany non-terminals, i.eN|N |
is the largest set in this chain. So, it follows that ϵ ∈ L(G) if and only if S ∈ N|N |,
where S is the starting non-terminal of the grammar G.

5. Describe a procedure that takes a context-free grammar G and a letter a
and checks whether a ∈ L(G).

Solution. To be completed.
6. Describe a procedure that takes a context-free grammar G and a letter a
and checks if there is a word in L(G) that contains the letter a.

Solution. To be completed.
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