TOC PROBLEM SET-7

SIDDHANT CHAUDHARY
BMC201953

Consider the following grammar G over the alphabet {a, b}.
S —aBS | bAS | €
A—a | bAA
B—b | aBB

The first 3 questions use this grammar.
1. Prove that every word generated by GG has equal number of a’s and I/'s.

Solution. Suppose S = o where a € (N U X)*, where N is the set of non-
terminals of G. We will show that

e + |afa = lafy + |als

by induction on the length of the derivation. For the base case, suppose the
length of the derivation is 0. The only possibility is that « = S, and clearly the
base case is true, because the word S does not contain any terminal or the
symbols A, B. So, suppose the statement is true for any derivation of length n,
and let

S5 o
be a derivation of length n + 1, i.e suppose the derivation is

S
By the induction hypothesis, we know that

*(n steps)
— 0 —

|o'la + 1|4 = |/l + || 5

Now, suppose the step @/ — « involves one of the production S — aBS or
S — bAS or S — e. Observe that, in either of these productions, we are al-
ways adding one of a, A and one of b, B, i.e in any of these productions, we have
the following two equations:

lt|a + |a|a = | |a + |4 + 1
laly + |alp = [+ |5 + 1
and hence in any case we see that
oo + lafa = |l + |als

Now suppose the step o/ — « involves the production A — «. In that case, we
have

lola + lala = (|o']a +1) + (Ja'[a = 1) = |’ +[o/]4

laly + |als = ||, + ||

Date: October 2020.

2 SIDDHANT CHAUDHARY BMC201953

and once again we see that
|ala + |orla = |afy + |als

Next, suppose the step o/ — « involves the production A — bAA. In that case,
the equations we have are

o + lafa = [o|a +][4+ 1
laly + |alp = [/, + |o/[p + 1
and hence in this case as well we have
|ala + ala = lafy + |5

Finally, if the step o/ — « involves one of the productions B — bor B — aBB,
then we can apply the same argument as above. Hence, the induction proof is
complete. So, it follows that if the word o € ¥* is generated by G, it will be true
that

e + |afa = lafy + |als
which implies that |a|, = |a;, because a cannot contain the non-terminals A, B.
This proves the claim.

Before doing the next problem, I will prove the hint given in the footnotes, and
I will do this in two steps.

Lemma0.1. Letw € {a,b}* be a non-empty word such that for every non-empty
prefix u of w,

(T) |u‘a > |U’|b
holds. Then, we show that there is a left-most derivation in G of the form
S 5 waS

where « is a sequence of |w|, — |wy| B’s. (An analogous statement holds for the
case |ul, > |u|, for every non-empty prefix u of w.)

Proof. If |w| = 1, then clearly w = a. Now, the derivation
S —aBS

does the job. So, we can assume that |w| > 1. Now, let « be a non-empty prefix
of w. We will show that there is a derivation of the form

S 5w, S

where «, is a sequence of |u|, — |u|, B’s, and we will do so by induction on the
length of the prefix |u|. For the base case, suppose |u| = 1, i.e v is the first letter
of w. Clearly, it must be that © = a. In that case, consider the derivation

S — aBS = ua,S

and clearly the base case is true. Now, let u be a prefix of w of length > 1.
Suppose s is the last letter of v, so we can write u = u's, where v’ is a non-empty
prefix of w. By our induction hypothesis, there is a derivation

S5 way S

(and thisis where we will use the condition 1) By the condition {, we know that o,
contains atleast one B, and hence there is a left-most B in «,. If s = a, then we

TOC PROBLEM SET-7 3

expand the left most B as a BB (by using the production B — aBB), and hence

we will get

¥ B—aBB
S 5wy S 22 waBay S = ua,S

If s = b, then we expand the left most B as b (by using the production B — b),
and hence we will get

B—sb
S5 v ayS = w'ba,S = ua, S

and hence,in any case, the required derivation has been found. So, by induction,
we see that there is a left-most derivation of the form

S 5 waS
completing the proof of the claim. |

Next, we will prove the hint in the footnotes.

Lemma 0.2. Let w be any word in {a,b}*. Then, there is a left-most derivation in
G of the form
S 5 was

where « is as defined in Lemma 0.1.

Proof. We will prove this by induction on the length of w. For the base case,
|w| = 1. If w = @, then we have
S — aBS

and if w = b, we have
S — bAS

and hence the base |w| = 1 is true. Now, suppose the statement holds for all
words of length atmost n, and let w be a word of length n + 1. First, suppose
lw|, = |wlp, and hence a will be an empty word in this case. Let s be the last
letter of w, and let w = w's, where w’ is non-empty. First, if s = a, then we have
w = w'a. Moreover, it must be true that |v’'|, = |v'|, + 1, and clearly v’ is a
word of length atmost n. So, by the inductive hypothesis, we know that there is
a derivation
S 5 w'AS
So, we can just do
S 5w AS 2% w'aS = wS = was

and clearly, the case when s = b is analogous to this.

Next, suppose |w|, > |w|, (the case |w]|, > |w|,) has an analogous proof). There
are three cases here, which we handle below.

(1) In the first case, suppose there is some non-empty prefix u of w with
|ulp > |uls. Since |w|, > |w|s, it follows that there is some non-empty
prefix v’ of w with ||, = ||, In that case, we can write w = v'v, where
v satisfies

vla > [vlo
and clearly, both «’, v have length atmost n. So, by induction hypothesis,
there are derivations S = «'S and S = v, S, where «, is a sequence of
|v| — |v|y B's. Combining these, we have a derivation

S5 u'S S wva,S = waS

because clearly, o, = «, and this case is handled.

4 SIDDHANT CHAUDHARY BMC201953

(2) Inthe second case, there is some non-empty prefix v of w with |u|, = |ulp.
This case can be handled the same way as case (1).

(8) Inthis case, all non-empty prefixes u of w satisfy |u|, > |uly, and this case
reduces to Lemma 0.1. So, all the cases have been handled.

So, by induction, the lemma has been proven. |

2. Prove that every word with equal number of ¢’s and ¥'s is derivable from S
to conclude that this is yet another grammar for the language of words with
equal number of ¢’s and ¥'s.

Solution. By Lemma 0.2, if w is a word with |w|, = |w|,, then there is a left-most
derivation of the form

S 5 wsS
Then, we can just do

S S wS = w

and hence every such word w is derivable in GG. So, by problems 1. and 2. we
conclude that G is a grammar accepting all words with equal number of ¢’s and
b's.

3. For the following, you need not prove the correctness of G.
(a) Modify G toa grammar over {a, b, c} that accepts the language {w | vc prefix w then |v|, =

U’b}-

Solution. It can be proven that any word w generated by B — b | aBB has the
property

jw]p = |wle +1

and an analogous statement hold for every word generated by A — a | bAA.
So, we modify the grammar as follows.

S —aBS | bAS | R | € | ¢S
A—a | bAA

B b | aBB

R—aR | bR |

where we have introduced the non-terminal R to handle the case where if there
are no s in the word, then it can be any word over {a,b}*.

(b) Modify G toa grammar over {a, b, c} that accepts the language {w | vc prefix w then |v|, #

0o}

TOC PROBLEM SET-7 5

Solution. The modified grammar is the following.
S—S51 | SS | R
S1 — aCBy | bCA,
A; — Ca | CbCACA; | €
By — Cb | CaCBCBy | €
Sy = aCBySy | bCASs | €
Ay — Ca | CbCAC A,y
By — Cb | CaCByCBy
C—c|cC|e
R—aR | bR | €

Now I will explain the reasoning behind this grammar. The start non-terminal
is S, and R is used for generating any random word over {a,b}*. Any word in
L(G) must of of one of the following forms.

(1) The first form is this: let w be any word with equal ¢'s and V's, and let
weon b€ w with some ¢’s embedded in w such that w,,; lies in L(G), and
also some letters of w collapsed to ¢. For instance, let w = aaabbb, and let
weoy = aaac, Where all the v's are collapsed. Words like this where col-
lapsing occurs are generated by using S;, which is a copy of the original
grammar with some modifications. Note that, A, B; are allowed to go to
¢, because collapsing is allowed in this case.

(2) The second form is w,..;w’, where v’ € L(G), and we explain w,,..;. Let w
be any word with equal number of «’sand ¢'s, and let w,,..,; be w with some
s embedded with no collapsing. For example, if we use w = aaabbb, then
Wheon CaAN be aaacbbb. Words of the form w,,.,; are generated using 5.,
where S, is another copy of S with some modifications. Note that A,, B,
are not allowed to go to ¢ here, because no collapsing is allowed in this
case.

The non-terminal C'is used to embed ¢’s wherever it can be embedded (I couldn’t
figure out a simpler way of explaining this construction. Apologies for that.)

4. Describe a procedure that takes a context-free grammar G as input and
checks whether € € L(G).

Solution. Let N, = ¢, and we inductively define sets /N, for i € N as follows.
Suppose N is the set of all non-terminals of GG. Define

N, ={z € N|z—a,ae {NgUN, U...UN,; 1}"}
We show that
(*) X5e = XcN,, forsomei>1

Suppose X € Ny, and clearly by the definition of IV, it is clear that X = ¢. Now
suppose X € N, implies X = e forevery1 < i < n,and let X € N, ;. By the
definition of N, ,;, we know that X — «, for some o« € {Ny U N; U ...U N, }*. If
«a = ¢, then we are done, i.e X = ¢. Otherwise, we know that each letter of ais a
non-terminal belonging to NV,, (because N; C N, C ... C N,,, and that N, = ¢). By
our inductive hypothesis, we know that each non-terminal in V,, can generate e,
and hence it follows that o can generate ¢. So again, X = ¢, and so by induction,

6 SIDDHANT CHAUDHARY BMC201953

one direction of () is proven. To prove the other direction, suppose X = ¢ for
some X € N, and let T" be the derivation tree, and clearly, every leaf of T is e,
so that every leaf is in V;. Remove all leaves from 7' to get a new tree 7"’. By
definition of N;, we see that every leaf of 7" is in N;. We continue to remove
leaves this way, and hence it must be true that the root of 7, which is X, is in
some X;, for some i € N. This completes the proof of (x).

Finally, as we mentioned above, it is clear that N; C N, C ..., i.e the sets NN,
form an increasing chain of sets under inclusion. Moreover, the chain must be
eventually constant, because there are only finitely many non-terminals, i.e Ny
is the largest set in this chain. So, it follows that e € L(G) if and only if S € Ny,
where S is the starting non-terminal of the grammar G.

5. Describe a procedure that takes a context-free grammar G and a letter a
and checks whether a € L(G).

Solution. To be completed.

6. Describe a procedure that takes a context-free grammar G and a letter a
and checks if there is a word in L(G) that contains the letter a.

Solution. To be completed.

	1
	2
	3
	4
	5
	6

