TOC PROBLEM SET-7

SIDDHANT CHAUDHARY
BMC201953

Consider the following grammar G over the alphabet $\{a, b\}$.

$$
\begin{aligned}
& S \rightarrow a B S|b A S| \epsilon \\
& A \rightarrow a \mid b A A \\
& B \rightarrow b \mid a B B
\end{aligned}
$$

The first 3 questions use this grammar.

1. Prove that every word generated by G has equal number of a^{\prime} s and b^{\prime} s.

Solution. Suppose $S \xrightarrow{*} \alpha$ where $\alpha \in(N \cup \Sigma)^{*}$, where N is the set of nonterminals of G. We will show that

$$
|\alpha|_{a}+|\alpha|_{A}=|\alpha|_{b}+|\alpha|_{B}
$$

by induction on the length of the derivation. For the base case, suppose the length of the derivation is 0 . The only possibility is that $\alpha=S$, and clearly the base case is true, because the word S does not contain any terminal or the symbols A, B. So, suppose the statement is true for any derivation of length n, and let

$$
S \xrightarrow{*} \alpha
$$

be a derivation of length $n+1$, i.e suppose the derivation is

$$
S \xrightarrow{*(n \text { steps })} \alpha^{\prime} \rightarrow \alpha
$$

By the induction hypothesis, we know that

$$
\left|\alpha^{\prime}\right|_{a}+\left|\alpha^{\prime}\right|_{A}=\left|\alpha^{\prime}\right|_{b}+\left|\alpha^{\prime}\right|_{B}
$$

Now, suppose the step $\alpha^{\prime} \rightarrow \alpha$ involves one of the production $S \rightarrow a B S$ or $S \rightarrow b A S$ or $S \rightarrow \epsilon$. Observe that, in either of these productions, we are always adding one of a, A and one of b, B, i.e in any of these productions, we have the following two equations:

$$
\begin{aligned}
|\alpha|_{a}+|\alpha|_{A} & =\left|\alpha^{\prime}\right|_{a}+\left|\alpha^{\prime}\right|_{A}+1 \\
|\alpha|_{b}+|\alpha|_{B} & =\left|\alpha^{\prime}\right|_{b}+\left|\alpha^{\prime}\right|_{B}+1
\end{aligned}
$$

and hence in any case we see that

$$
|\alpha|_{a}+|\alpha|_{A}=|\alpha|_{b}+|\alpha|_{B}
$$

Now suppose the step $\alpha^{\prime} \rightarrow \alpha$ involves the production $A \rightarrow a$. In that case, we have

$$
\begin{aligned}
|\alpha|_{a}+|\alpha|_{A} & =\left(\left|\alpha^{\prime}\right|_{a}+1\right)+\left(\left|\alpha^{\prime}\right|_{A}-1\right)=\left|\alpha^{\prime}\right|_{a}+\left|\alpha^{\prime}\right|_{A} \\
|\alpha|_{b}+|\alpha|_{B} & =\left|\alpha^{\prime}\right|_{b}+\left|\alpha^{\prime}\right|_{B}
\end{aligned}
$$

and once again we see that

$$
|\alpha|_{a}+|\alpha|_{A}=|\alpha|_{b}+|\alpha|_{B}
$$

Next, suppose the step $\alpha^{\prime} \rightarrow \alpha$ involves the production $A \rightarrow b A A$. In that case, the equations we have are

$$
\begin{aligned}
|\alpha|_{a}+|\alpha|_{A} & =\left|\alpha^{\prime}\right|_{a}+\left|\alpha^{\prime}\right|_{A}+1 \\
|\alpha|_{b}+|\alpha|_{B} & =\left|\alpha^{\prime}\right|_{b}+\left|\alpha^{\prime}\right|_{B}+1
\end{aligned}
$$

and hence in this case as well we have

$$
|\alpha|_{a}+|\alpha|_{A}=|\alpha|_{b}+|\alpha|_{B}
$$

Finally, if the step $\alpha^{\prime} \rightarrow \alpha$ involves one of the productions $B \rightarrow b$ or $B \rightarrow a B B$, then we can apply the same argument as above. Hence, the induction proof is complete. So, it follows that if the word $\alpha \in \Sigma^{*}$ is generated by G, it will be true that

$$
|\alpha|_{a}+|\alpha|_{A}=|\alpha|_{b}+|\alpha|_{B}
$$

which implies that $|\alpha|_{a}=|\alpha|_{b}$, because α cannot contain the non-terminals A, B. This proves the claim.

Before doing the next problem, I will prove the hint given in the footnotes, and I will do this in two steps.

Lemma 0.1. Let $w \in\{a, b\}^{*}$ be a non-empty word such that for every non-empty prefix u of w,

$$
|u|_{a}>|u|_{b}
$$

holds. Then, we show that there is a left-most derivation in G of the form

$$
S \xrightarrow{*} w \alpha S
$$

where α is a sequence of $|w|_{a}-\left|w_{b}\right| B^{\prime}$ s. (An analogous statement holds for the case $|u|_{b}>|u|_{a}$ for every non-empty prefix u of w.)

Proof. If $|w|=1$, then clearly $w=a$. Now, the derivation

$$
S \rightarrow a B S
$$

does the job. So, we can assume that $|w|>1$. Now, let u be a non-empty prefix of w. We will show that there is a derivation of the form

$$
S \xrightarrow{*} u \alpha_{u} S
$$

where α_{u} is a sequence of $|u|_{a}-|u|_{b} B^{\prime} s$, and we will do so by induction on the length of the prefix $|u|$. For the base case, suppose $|u|=1$, i.e u is the first letter of w. Clearly, it must be that $u=a$. In that case, consider the derivation

$$
S \rightarrow a B S=u \alpha_{u} S
$$

and clearly the base case is true. Now, let u be a prefix of w of length >1. Suppose s is the last letter of u, so we can write $u=u^{\prime} s$, where u^{\prime} is a non-empty prefix of w. By our induction hypothesis, there is a derivation

$$
S \xrightarrow{*} u^{\prime} \alpha_{u^{\prime}} S
$$

(and this is where we will use the condition \dagger) By the condition \dagger, we know that $\alpha_{u^{\prime}}$ contains atleast one B, and hence there is a left-most B in $\alpha_{u^{\prime}}$. If $s=a$, then we
expand the left most B as $a B B$ (by using the production $B \rightarrow a B B$), and hence we will get

$$
S \xrightarrow{*} u^{\prime} \alpha_{u^{\prime}} S \xrightarrow{B \rightarrow a B B} u^{\prime} a B \alpha_{u^{\prime}} S=u \alpha_{u} S
$$

If $s=b$, then we expand the left most B as b (by using the production $B \rightarrow b$), and hence we will get

$$
S \xrightarrow{*} u^{\prime} \alpha_{u^{\prime}} S \xrightarrow{B \rightarrow b} u^{\prime} b \alpha_{u} S=u \alpha_{u} S
$$

and hence, in any case, the required derivation has been found. So, by induction, we see that there is a left-most derivation of the form

$$
S \xrightarrow{*} w \alpha S
$$

completing the proof of the claim.
Next, we will prove the hint in the footnotes.
Lemma 0.2. Let w be any word in $\{a, b\}^{*}$. Then, there is a left-most derivation in G of the form

$$
S \xrightarrow{*} w \alpha S
$$

where α is as defined in Lemma 0.1.
Proof. We will prove this by induction on the length of w. For the base case, $|w|=1$. If $w=a$, then we have

$$
S \rightarrow a B S
$$

and if $w=b$, we have

$$
S \rightarrow b A S
$$

and hence the base $|w|=1$ is true. Now, suppose the statement holds for all words of length atmost n, and let w be a word of length $n+1$. First, suppose $|w|_{a}=|w|_{b}$, and hence α will be an empty word in this case. Let s be the last letter of w, and let $w=w^{\prime} s$, where w^{\prime} is non-empty. First, if $s=a$, then we have $w=w^{\prime} a$. Moreover, it must be true that $\left|w^{\prime}\right|_{b}=\left|w^{\prime}\right|_{a}+1$, and clearly w^{\prime} is a word of length atmost n. So, by the inductive hypothesis, we know that there is a derivation

$$
S \xrightarrow{*} w^{\prime} A S
$$

So, we can just do

$$
S \xrightarrow{*} w^{\prime} A S \xrightarrow{A \rightarrow a} w^{\prime} a S=w S=w \alpha S
$$

and clearly, the case when $s=b$ is analogous to this.
Next, suppose $|w|_{a}>|w|_{b}$ (the case $|w|_{b}>|w|_{a}$) has an analogous proof). There are three cases here, which we handle below.
(1) In the first case, suppose there is some non-empty prefix u of w with $|u|_{b}>|u|_{a}$. Since $|w|_{a}>|w|_{b}$, it follows that there is some non-empty prefix u^{\prime} of w with $\left|u^{\prime}\right|_{a}=\left|u^{\prime}\right|_{b}$. In that case, we can write $w=u^{\prime} v$, where v satisfies

$$
|v|_{a}>|v|_{b}
$$

and clearly, both u^{\prime}, v have length atmost n. So, by induction hypothesis, there are derivations $S \xrightarrow{*} u^{\prime} S$ and $S \xrightarrow{*} v \alpha_{v} S$, where α_{v} is a sequence of $|v|_{a}-|v|_{b} B^{\prime}$ s. Combining these, we have a derivation

$$
S \xrightarrow{*} u^{\prime} S \xrightarrow{*} u^{\prime} v \alpha_{v} S=w \alpha S
$$

because clearly, $\alpha_{v}=\alpha$, and this case is handled.
(2) In the second case, there is some non-empty prefix u of w with $|u|_{a}=|u|_{b}$. This case can be handled the same way as case (1).
(3) In this case, all non-empty prefixes u of w satisfy $|u|_{a}>|u|_{b}$, and this case reduces to Lemma 0.1 . So, all the cases have been handled.

So, by induction, the lemma has been proven.
2. Prove that every word with equal number of a^{\prime} s and b^{\prime} s is derivable from S to conclude that this is yet another grammar for the language of words with equal number of $a^{\prime} s$ and b^{\prime} s.

Solution. By Lemma 0.2, if w is a word with $|w|_{a}=|w|_{b}$, then there is a left-most derivation of the form

$$
S \xrightarrow{*} w S
$$

Then, we can just do

$$
S \xrightarrow{*} w S \rightarrow w
$$

and hence every such word w is derivable in G. So, by problems 1. and 2. we conclude that G is a grammar accepting all words with equal number of a^{\prime} s and b^{\prime} s.
3. For the following, you need not prove the correctness of G.
(a) Modify G to a grammar over $\{a, b, c\}$ that accepts the language $\left\{w \mid v c\right.$ prefix w then $|v|_{a}=$ $\left.|v|_{b}\right\}$.

Solution. It can be proven that any word w generated by $B \rightarrow b \mid a B B$ has the property

$$
|w|_{b}=|w|_{a}+1
$$

and an analogous statement hold for every word generated by $A \rightarrow a \mid b A A$. So, we modify the grammar as follows.

$$
\begin{aligned}
& S \rightarrow a B S|b A S| R|\epsilon| c S \\
& A \rightarrow a \mid b A A \\
& B \rightarrow b \mid a B B \\
& R \rightarrow a R|b R| \epsilon
\end{aligned}
$$

where we have introduced the non-terminal R to handle the case where if there are no c^{\prime} s in the word, then it can be any word over $\{a, b\}^{*}$.
(b) Modify G to a grammar over $\{a, b, c\}$ that accepts the language $\left\{w \mid v c\right.$ prefix w then $|v|_{a} \neq$ $\left.|v|_{b}\right\}$.

Solution. The modified grammar is the following.

$$
\begin{aligned}
S & \rightarrow S_{1}\left|S_{2} S\right| R \\
S_{1} & \rightarrow a C B_{1} \mid b C A_{1} \\
A_{1} & \rightarrow C a\left|C b C A_{1} C A_{1}\right| \epsilon \\
B_{1} & \rightarrow C b\left|C a C B_{1} C B_{1}\right| \epsilon \\
S_{2} & \rightarrow a C B_{2} S_{2}\left|b C A_{2} S_{2}\right| \epsilon \\
A_{2} & \rightarrow C a \mid C b C A_{2} C A_{2} \\
B_{2} & \rightarrow C b \mid C a C B_{2} C B_{2} \\
C & \rightarrow c|c C| \epsilon \\
R & \rightarrow a R|b R| \epsilon
\end{aligned}
$$

Now I will explain the reasoning behind this grammar. The start non-terminal is S, and R is used for generating any random word over $\{a, b\}^{*}$. Any word in $L(G)$ must of of one of the following forms.
(1) The first form is this: let w be any word with equal a^{\prime} s and $b^{\prime} \mathbf{s}$, and let $w_{\text {coll }}$ be w with some c^{\prime} s embedded in w such that $w_{\text {coll }}$ lies in $L(G)$, and also some letters of w collapsed to ϵ. For instance, let $w=a a a b b b$, and let $w_{\text {coll }}=a a a c$, where all the $b^{\prime} s$ are collapsed. Words like this where collapsing occurs are generated by using S_{1}, which is a copy of the original grammar with some modifications. Note that, A_{1}, B_{1} are allowed to go to ϵ, because collapsing is allowed in this case.
(2) The second form is $w_{\text {ncoll }} w^{\prime}$, where $w^{\prime} \in L(G)$, and we explain $w_{\text {ncoll }}$. Let w be any word with equal number of a^{\prime} s and $b^{\prime} \mathbf{s}$, and let $w_{\text {ncoll }}$ be w with some $c^{\prime} s$ embedded with no collapsing. For example, if we use $w=a a a b b b$, then $w_{\text {ncoll }}$ can be aaacbbb. Words of the form $w_{\text {ncoll }}$ are generated using S_{2}, where S_{2} is another copy of S with some modifications. Note that A_{2}, B_{2} are not allowed to go to ϵ here, because no collapsing is allowed in this case.
The non-terminal C is used to embed c 's wherever it can be embedded (I couldn't figure out a simpler way of explaining this construction. Apologies for that.)
4. Describe a procedure that takes a context-free grammar G as input and checks whether $\epsilon \in L(G)$.

Solution. Let $N_{0}=\epsilon$, and we inductively define sets N_{i} for $i \in \mathbb{N}$ as follows. Suppose N is the set of all non-terminals of G. Define

$$
N_{i}=\left\{x \in N \mid x \rightarrow \alpha, \alpha \in\left\{N_{0} \cup N_{1} \cup \ldots \cup N_{i-1}\right\}^{*}\right\}
$$

We show that

$$
\begin{equation*}
X \xrightarrow{*} \epsilon \Longleftrightarrow X \in N_{i}, \text { for some } i \geq 1 \tag{*}
\end{equation*}
$$

Suppose $X \in N_{1}$, and clearly by the definition of N_{1}, it is clear that $X \xrightarrow{*} \epsilon$. Now suppose $X \in N_{i}$ implies $X \xrightarrow{*} \epsilon$ for every $1 \leq i \leq n$, and let $X \in N_{n+1}$. By the definition of N_{n+1}, we know that $X \rightarrow \alpha$, for some $\alpha \in\left\{N_{0} \cup N_{1} \cup \ldots \cup N_{n}\right\}^{*}$. If $\alpha=\epsilon$, then we are done, i.e $X \xrightarrow{*} \epsilon$. Otherwise, we know that each letter of α is a non-terminal belonging to N_{n} (because $N_{1} \subseteq N_{2} \subseteq \ldots \subseteq N_{n}$, and that $N_{0}=\epsilon$). By our inductive hypothesis, we know that each non-terminal in N_{n} can generate ϵ, and hence it follows that α can generate ϵ. So again, $X \xrightarrow{*} \epsilon$, and so by induction,
one direction of $(*)$ is proven. To prove the other direction, suppose $X \xrightarrow{*} \epsilon$ for some $X \in N$, and let T be the derivation tree, and clearly, every leaf of T is ϵ, so that every leaf is in N_{0}. Remove all leaves from T to get a new tree T^{\prime}. By definition of N_{1}, we see that every leaf of T^{\prime} is in N_{1}. We continue to remove leaves this way, and hence it must be true that the root of T, which is X, is in some X_{i}, for some $i \in \mathbb{N}$. This completes the proof of $(*)$.

Finally, as we mentioned above, it is clear that $N_{1} \subseteq N_{2} \subseteq$..., i.e the sets N_{i} form an increasing chain of sets under inclusion. Moreover, the chain must be eventually constant, because there are only finitely many non-terminals, i.e $N_{|N|}$ is the largest set in this chain. So, it follows that $\epsilon \in L(G)$ if and only if $S \in N_{|N|}$, where S is the starting non-terminal of the grammar G.
5. Describe a procedure that takes a context-free grammar G and a letter a and checks whether $a \in L(G)$.

Solution. To be completed.
6. Describe a procedure that takes a context-free grammar G and a letter a and checks if there is a word in $L(G)$ that contains the letter a.
Solution. To be completed.

