TOC PROBLEM SET-7

SIDDHANT CHAUDHARY BMC201953

Consider the following grammar G over the alphabet $\{a, b\}$.

$$S \to aBS \mid bAS \mid \epsilon$$
$$A \to a \mid bAA$$
$$B \to b \mid aBB$$

The first 3 questions use this grammar.

1. Prove that every word generated by G has equal number of a's and b's.

Solution. Suppose $S \xrightarrow{*} \alpha$ where $\alpha \in (N \cup \Sigma)^*$, where N is the set of non-terminals of G. We will show that

$$|\alpha|_a + |\alpha|_A = |\alpha|_b + |\alpha|_B$$

by induction on the length of the derivation. For the base case, suppose the length of the derivation is 0. The only possibility is that $\alpha = S$, and clearly the base case is true, because the word S does not contain any terminal or the symbols A, B. So, suppose the statement is true for any derivation of length n, and let

$$S \xrightarrow{*} \alpha$$

be a derivation of length n + 1, i.e suppose the derivation is

$$S \xrightarrow{*(n \text{ steps})} \alpha' \to \alpha$$

By the induction hypothesis, we know that

$$\alpha'|_a + |\alpha'|_A = |\alpha'|_b + |\alpha'|_B$$

Now, suppose the step $\alpha' \rightarrow \alpha$ involves one of the production $S \rightarrow aBS$ or $S \rightarrow bAS$ or $S \rightarrow \epsilon$. Observe that, in either of these productions, we are always adding one of a, A and one of b, B, i.e in any of these productions, we have the following two equations:

$$|\alpha|_a + |\alpha|_A = |\alpha'|_a + |\alpha'|_A + 1$$
$$|\alpha|_b + |\alpha|_B = |\alpha'|_b + |\alpha'|_B + 1$$

and hence in any case we see that

$$|\alpha|_a + |\alpha|_A = |\alpha|_b + |\alpha|_B$$

Now suppose the step $\alpha' \to \alpha$ involves the production $A \to a.$ In that case, we have

$$\begin{aligned} |\alpha|_a + |\alpha|_A &= (|\alpha'|_a + 1) + (|\alpha'|_A - 1) = |\alpha'|_a + |\alpha'|_A \\ |\alpha|_b + |\alpha|_B &= |\alpha'|_b + |\alpha'|_B \end{aligned}$$

Date: October 2020.

and once again we see that

$$|\alpha|_a + |\alpha|_A = |\alpha|_b + |\alpha|_B$$

Next, suppose the step $\alpha' \to \alpha$ involves the production $A \to bAA$. In that case, the equations we have are

$$|\alpha|_a + |\alpha|_A = |\alpha'|_a + |\alpha'|_A + 1$$
$$|\alpha|_b + |\alpha|_B = |\alpha'|_b + |\alpha'|_B + 1$$

and hence in this case as well we have

 $|\alpha|_a + |\alpha|_A = |\alpha|_b + |\alpha|_B$

Finally, if the step $\alpha' \to \alpha$ involves one of the productions $B \to b$ or $B \to aBB$, then we can apply the same argument as above. Hence, the induction proof is complete. So, it follows that if the word $\alpha \in \Sigma^*$ is generated by G, it will be true that

$$|\alpha|_a + |\alpha|_A = |\alpha|_b + |\alpha|_B$$

which implies that $|\alpha|_a = |\alpha|_b$, because α cannot contain the non-terminals A, B. This proves the claim.

Before doing the next problem, I will prove the hint given in the footnotes, and I will do this in two steps.

Lemma 0.1. Let $w \in \{a, b\}^*$ be a non-empty word such that for every non-empty prefix u of w,

$$|u|_a > |u|_b$$

holds. Then, we show that there is a left-most derivation in G of the form

$$S \xrightarrow{*} w\alpha S$$

where α is a sequence of $|w|_a - |w_b| B's$. (An analogous statement holds for the case $|u|_b > |u|_a$ for every non-empty prefix u of w.)

Proof. If |w| = 1, then clearly w = a. Now, the derivation

$$S \rightarrow aBS$$

does the job. So, we can assume that |w| > 1. Now, let u be a non-empty prefix of w. We will show that there is a derivation of the form

$$S \xrightarrow{*} u\alpha_u S$$

where α_u is a sequence of $|u|_a - |u|_b B'$ s, and we will do so by induction on the length of the prefix |u|. For the base case, suppose |u| = 1, i.e u is the first letter of w. Clearly, it must be that u = a. In that case, consider the derivation

$$S \to aBS = u\alpha_u S$$

and clearly the base case is true. Now, let u be a prefix of w of length > 1. Suppose s is the last letter of u, so we can write u = u's, where u' is a non-empty prefix of w. By our induction hypothesis, there is a derivation

$$S \xrightarrow{*} u' \alpha_{u'} S$$

(and this is where we will use the condition \dagger) By the condition \dagger , we know that $\alpha_{u'}$ contains atleast one *B*, and hence there is a left-most *B* in $\alpha_{u'}$. If s = a, then we

expand the left most B as aBB (by using the production $B \rightarrow aBB$), and hence we will get

$$S \xrightarrow{*} u' \alpha_{u'} S \xrightarrow{B \to aBB} u' a B \alpha_{u'} S = u \alpha_u S$$

If s = b, then we expand the left most B as b (by using the production $B \rightarrow b$), and hence we will get

$$S \xrightarrow{*} u' \alpha_{u'} S \xrightarrow{B \to b} u' b \alpha_u S = u \alpha_u S$$

and hence, in any case, the required derivation has been found. So, by induction, we see that there is a left-most derivation of the form

 $S \xrightarrow{*} w \alpha S$

completing the proof of the claim.

Next, we will prove the hint in the footnotes.

Lemma 0.2. Let w be any word in $\{a, b\}^*$. Then, there is a left-most derivation in G of the form

$$S \xrightarrow{*} w\alpha S$$

where α is as defined in **Lemma 0.1**.

Proof. We will prove this by induction on the length of w. For the base case, |w| = 1. If w = a, then we have

$$S \rightarrow aBS$$

and if w = b, we have

$$S \to bAS$$

and hence the base |w| = 1 is true. Now, suppose the statement holds for all words of length atmost n, and let w be a word of length n + 1. First, suppose $|w|_a = |w|_b$, and hence α will be an empty word in this case. Let s be the last letter of w, and let w = w's, where w' is non-empty. First, if s = a, then we have w = w'a. Moreover, it must be true that $|w'|_b = |w'|_a + 1$, and clearly w' is a word of length atmost n. So, by the inductive hypothesis, we know that there is a derivation

$$S \xrightarrow{*} w'AS$$

So, we can just do

$$S \xrightarrow{*} w'AS \xrightarrow{A \to a} w'aS = wS = w\alpha S$$

and clearly, the case when s = b is analogous to this.

Next, suppose $|w|_a > |w|_b$ (the case $|w|_b > |w|_a$) has an analogous proof). There are three cases here, which we handle below.

(1) In the first case, suppose there is some non-empty prefix u of w with $|u|_b > |u|_a$. Since $|w|_a > |w|_b$, it follows that there is some non-empty prefix u' of w with $|u'|_a = |u'|_b$. In that case, we can write w = u'v, where v satisfies

$$|v|_a > |v|_b$$

and clearly, both u', v have length atmost n. So, by induction hypothesis, there are derivations $S \xrightarrow{*} u'S$ and $S \xrightarrow{*} v\alpha_v S$, where α_v is a sequence of $|v|_a - |v|_b B'$ s. Combining these, we have a derivation

$$S \xrightarrow{*} u'S \xrightarrow{*} u'v\alpha_v S = w\alpha S$$

because clearly, $\alpha_v = \alpha$, and this case is handled.

SIDDHANT CHAUDHARY BMC201953

- (2) In the second case, there is some non-empty prefix u of w with $|u|_a = |u|_b$. This case can be handled the same way as case (1).
- (3) In this case, all non-empty prefixes u of w satisfy $|u|_a > |u|_b$, and this case reduces to **Lemma 0.1**. So, all the cases have been handled.

So, by induction, the lemma has been proven.

2. Prove that every word with equal number of a's and b's is derivable from S to conclude that this is yet another grammar for the language of words with equal number of a's and b's.

Solution. By Lemma 0.2, if w is a word with $|w|_a = |w|_b$, then there is a left-most derivation of the form

$$S \xrightarrow{*} wS$$

Then, we can just do

$$S \xrightarrow{*} wS \to w$$

and hence every such word w is derivable in G. So, by problems **1**. and **2**. we conclude that G is a grammar accepting all words with equal number of a's and b's.

3. For the following, you need not prove the correctness of *G*. (a) Modify *G* to a grammar over $\{a, b, c\}$ that accepts the language $\{w \mid vc \text{ prefix } w \text{ then } |v|_a = |v|_b\}$.

Solution. It can be proven that any word w generated by $B \rightarrow b \mid aBB$ has the property

$$|w|_{b} = |w|_{a} + 1$$

and an analogous statement hold for every word generated by $A \rightarrow a \mid bAA$. So, we modify the grammar as follows.

$$S \rightarrow aBS \mid bAS \mid R \mid \epsilon \mid cS$$
$$A \rightarrow a \mid bAA$$
$$B \rightarrow b \mid aBB$$
$$R \rightarrow aR \mid bR \mid \epsilon$$

where we have introduced the non-terminal R to handle the case where if there are no c's in the word, then it can be any word over $\{a, b\}^*$.

(b) Modify G to a grammar over $\{a, b, c\}$ that accepts the language $\{w \mid vc \text{ prefix } w \text{ then } |v|_a \neq |v|_b\}$.

Solution. The modified grammar is the following.

$$S \rightarrow S_1 \mid S_2S \mid R$$

$$S_1 \rightarrow aCB_1 \mid bCA_1$$

$$A_1 \rightarrow Ca \mid CbCA_1CA_1 \mid \epsilon$$

$$B_1 \rightarrow Cb \mid CaCB_1CB_1 \mid \epsilon$$

$$S_2 \rightarrow aCB_2S_2 \mid bCA_2S_2 \mid \epsilon$$

$$A_2 \rightarrow Ca \mid CbCA_2CA_2$$

$$B_2 \rightarrow Cb \mid CaCB_2CB_2$$

$$C \rightarrow c \mid cC \mid \epsilon$$

$$R \rightarrow aR \mid bR \mid \epsilon$$

Now I will explain the reasoning behind this grammar. The start non-terminal is S, and R is used for generating any random word over $\{a, b\}^*$. Any word in L(G) must of of one of the following forms.

- (1) The first form is this: let w be any word with equal a's and b's, and let w_{coll} be w with some c's embedded in w such that w_{coll} lies in L(G), and also some letters of w collapsed to ϵ . For instance, let w = aaabbb, and let $w_{coll} = aaac$, where all the b's are collapsed. Words like this where collapsing occurs are generated by using S_1 , which is a copy of the original grammar with some modifications. Note that, A_1, B_1 are allowed to go to ϵ , because collapsing is allowed in this case.
- (2) The second form is $w_{ncoll}w'$, where $w' \in L(G)$, and we explain w_{ncoll} . Let w be any word with equal number of a's and b's, and let w_{ncoll} be w with some c's embedded with no collapsing. For example, if we use w = aaabbb, then w_{ncoll} can be aaacbbb. Words of the form w_{ncoll} are generated using S_2 , where S_2 is another copy of S with some modifications. Note that A_2, B_2 are not allowed to go to ϵ here, because no collapsing is allowed in this case.

The non-terminal C is used to embed c's wherever it can be embedded (I couldn't figure out a simpler way of explaining this construction. Apologies for that.)

4. Describe a procedure that takes a context-free grammar G as input and checks whether $\epsilon \in L(G)$.

Solution. Let $N_0 = \epsilon$, and we inductively define sets N_i for $i \in \mathbb{N}$ as follows. Suppose N is the set of all non-terminals of G. Define

$$N_{i} = \{ x \in N \mid x \to \alpha, \alpha \in \{ N_{0} \cup N_{1} \cup ... \cup N_{i-1} \}^{*} \}$$

We show that

(*)
$$X \xrightarrow{*} \epsilon \iff X \in N_i$$
, for some $i \ge 1$

Suppose $X \in N_1$, and clearly by the definition of N_1 , it is clear that $X \stackrel{*}{\to} \epsilon$. Now suppose $X \in N_i$ implies $X \stackrel{*}{\to} \epsilon$ for every $1 \leq i \leq n$, and let $X \in N_{n+1}$. By the definition of N_{n+1} , we know that $X \to \alpha$, for some $\alpha \in \{N_0 \cup N_1 \cup ... \cup N_n\}^*$. If $\alpha = \epsilon$, then we are done, i.e $X \stackrel{*}{\to} \epsilon$. Otherwise, we know that each letter of α is a non-terminal belonging to N_n (because $N_1 \subseteq N_2 \subseteq ... \subseteq N_n$, and that $N_0 = \epsilon$). By our inductive hypothesis, we know that each non-terminal in N_n can generate ϵ , and hence it follows that α can generate ϵ . So again, $X \stackrel{*}{\to} \epsilon$, and so by induction, one direction of (*) is proven. To prove the other direction, suppose $X \xrightarrow{*} \epsilon$ for some $X \in N$, and let T be the derivation tree, and clearly, every leaf of T is ϵ , so that every leaf is in N_0 . Remove all leaves from T to get a new tree T'. By definition of N_1 , we see that every leaf of T' is in N_1 . We continue to remove leaves this way, and hence it must be true that the root of T, which is X, is in some X_i , for some $i \in \mathbb{N}$. This completes the proof of (*).

Finally, as we mentioned above, it is clear that $N_1 \subseteq N_2 \subseteq ...$, i.e the sets N_i form an increasing chain of sets under inclusion. Moreover, the chain must be eventually constant, because there are only finitely many non-terminals, i.e $N_{|N|}$ is the largest set in this chain. So, it follows that $\epsilon \in L(G)$ if and only if $S \in N_{|N|}$, where S is the starting non-terminal of the grammar G.

5. Describe a procedure that takes a context-free grammar G and a letter a and checks whether $a \in L(G)$.

Solution. To be completed.

6. Describe a procedure that takes a context-free grammar G and a letter a and checks if there is a word in L(G) that contains the letter a.

Solution. To be completed.