TOC PROBLEM SET-9

SIDDHANT CHAUDHARY
BMC201953

1. Construct PDAs for the following languages.
(a) $L=\left\{a^{n} b^{m} c^{m} d^{n} \mid m, n \in \mathbb{N}\right\}$.

Solution. Let $\Sigma=\{a, b, c, d\}$ and let $\Gamma=\{\perp, A, B, C, D\}$. We will make a PDA with five states, namely $S_{a}, S_{b}, S_{c}, S_{d}$ and $S_{\text {final }}$. Let the starting state be S_{a}, and the only final state will be $S_{\text {final }}$. The transitions will be as follows.

$$
\begin{aligned}
& \left(S_{a}, \perp\right) \xrightarrow{a}\left(S_{a}, A \perp\right) \\
& \left(S_{a}, A\right) \xrightarrow{a}\left(S_{a}, A A\right) \\
& \left(S_{a}, A\right) \xrightarrow{b}\left(S_{b}, B A\right) \\
& \left(S_{b}, B\right) \xrightarrow{b}\left(S_{b}, B B\right) \\
& \left(S_{b}, B\right) \xrightarrow{c}\left(S_{c}, \epsilon\right) \\
& \left(S_{c}, B\right) \xrightarrow{c}\left(S_{c}, \epsilon\right) \\
& \left(S_{c}, A\right) \xrightarrow{d}\left(S_{d}, \epsilon\right) \\
& \left(S_{d}, A\right) \xrightarrow{d}\left(S_{d}, \epsilon\right) \\
& \left(S_{d}, \perp\right) \xrightarrow{\epsilon}\left(S_{\text {final }}, \perp\right)
\end{aligned}
$$

Let me explain the reasoning behind these transitions. We start in the state S_{a} with the stack being empty. If we read the letter a, we keep pushing the symbol A on the top of the stack. Then, if we encounter b, we keep pushing the symbol B on the top of the stack. Next, when we encounter a c, we keep popping the symbol B from the top of the stack, and when we encounter d, we keep popping A from the top of the stack. The transitions are arranged in such a way that if we reach the state (S_{d}, \perp), a word of the form $a^{n} b^{m} c^{m} d^{n}$ has been read, where $n, m \in \mathbb{N}$. So, non-deterministically, we can go from $\left(S_{d}, \perp\right)$ to ($S_{\text {final }}, \perp$) to accept the word.
(b) Strings over the alphabet $\Sigma=\{1,+,=\}$ that denote valid equations of sums of unary numbers. Eg:

$$
11111+111=11+11+1111
$$

Solution. The idea here is simple: we just need to count the total number of $1^{\prime} s$ on either side of the equation, since we are dealing with unary numbers only. So, in the LHS as we read $1^{\prime} s$, we will keep pushing them on top of our stack, and the + signs will essentially be ignored. When an = sign is read, we must configure the PDA so that if a 1 is read after, we pop it from the top of the stack
(and continue to ignore the + signs). So, let $\Sigma=\{1,+,=\}$ and let $\Gamma=\{\perp, O\}$ (the O stands for one). Our PDA will contain five states, s, t, t_{+}, e and f, where the starting state will be s and the only final state will be f. The transitions are described below.

$$
\begin{gathered}
(s, \perp) \xrightarrow{\Xi}(t, \perp) \\
(s, \perp) \xrightarrow{1}(s, O \perp) \\
(s, O) \xrightarrow{1}(s, O O) \\
(s, O) \xrightarrow{+}(s,+O) \\
(s,+) \xrightarrow{1}(s, O) \\
(s, O) \xrightarrow{=}(e, O) \\
(e, O) \xrightarrow{1}(t, \epsilon) \\
(t, O) \xrightarrow{1}(t, \epsilon) \\
(t, O) \xrightarrow{+}\left(t_{+}, O\right) \\
\left(t_{+}, O\right) \xrightarrow{1}(t, \epsilon) \\
(t, \perp) \xrightarrow{\epsilon}(f, \perp)
\end{gathered}
$$

And let me explain the transitions. The first transition ensures that the equation $\epsilon=\epsilon$ is accepted. The next four transitions describe the action of the PDA on the LHS: there cannot be consecutive + signs, and the equation must begin and end with a 1 . Finally, if we encounter an = sign, we jump to the state e, to ensure that the next acceptable symbol is only 1 . The last three states describe the action of the PDA on the RHS. The point of t_{+}is to ensure that no consecutive + signs are read. Finally, any word that ends up in (t, \perp) is a valid equation.
(c) $L=\left\{w \mid(w)_{a}=(w)_{b}\right.$ and $(w)_{a}$ is even $\}$.

Solution. Let $\Sigma=\{a, b\}$ and let $\Gamma=\{\perp, A, B\}$. Our PDA will contain three states, namely S_{e}, S_{o} and $f\left(S_{e}\right.$ stands for even number of a^{\prime} s and S_{o} stands for odd number of $a^{\prime} \mathbf{s}$). The initial state will be S_{e} and the only final state will be f. The
transitions are given below.

$$
\begin{aligned}
& \left(S_{e}, \perp\right) \xrightarrow{a}\left(S_{o}, A \perp\right) \\
& \left(S_{e}, \perp\right) \xrightarrow{b}\left(S_{e}, B \perp\right) \\
& \left(S_{e}, A\right) \xrightarrow{a}\left(S_{o}, A A\right) \\
& \left(S_{e}, A\right) \xrightarrow{b}\left(S_{e}, \epsilon\right) \\
& \left(S_{e}, B\right) \xrightarrow{a}\left(S_{o}, \epsilon\right) \\
& \left(S_{e}, B\right) \xrightarrow{b}\left(S_{e}, B B\right) \\
& \left(S_{o}, \perp\right) \xrightarrow{a}\left(S_{e}, A \perp\right) \\
& \left(S_{o}, \perp\right) \xrightarrow{b}\left(S_{o}, B \perp\right) \\
& \left(S_{o}, A\right) \xrightarrow{a}\left(S_{e}, A A\right) \\
& \left(S_{o}, A\right) \xrightarrow{b}\left(S_{o}, \epsilon\right) \\
& \left(S_{o}, B\right) \xrightarrow{a}\left(S_{e}, \epsilon\right) \\
& \left(S_{o}, B\right) \xrightarrow{b}\left(S_{o}, B B\right) \\
& \left(S_{e}, \perp\right) \xrightarrow{\epsilon}(f, \perp)
\end{aligned}
$$

and the reasoning behind the transitions is rather straightforward: each time we read an a or b, we push an A or B or pop an A or B from the stack depending upon which letter is dominating. If we read an a, we switch from S_{e} to S_{o} and vice-versa. Finally, any word that ends up in $\left(S_{e}, \perp\right)$ is of the given form, and hence we can accept it.
2. Let G be a grammar in CNF. Let $a \in \Sigma, X \in N$. Is the language

$$
\left\{\alpha \in N^{*} \mid X \xrightarrow{*} a \alpha\right\}
$$

a regular language? Why/Why not?
Solution. The answer is that it may or may not be regular. I will give an example supporting each case. First, consider the following grammar, which is evidently in CNF:

$$
\begin{aligned}
S & \rightarrow A B \mid A X \\
X & \rightarrow S B \\
A & \rightarrow a
\end{aligned}
$$

I claim that
$(\dagger) \quad\left\{\alpha \in N^{*} \mid S \xrightarrow{*} a \alpha\right\}=\left\{A^{n-1} B^{n} \mid n \in \mathbb{N}\right\} \cup\left\{A^{n-1} S B^{n} \mid n \in \mathbb{N}\right\} \cup\left\{A^{n-1} X B^{n-1}\right\}$
(I am not proving this, but it is not hard to see that any sentencial form that is generated by S is of the form $A^{n} B^{n}, A^{n} S B^{n}$ or $A^{n} X B^{n-1}$ for $n \geq 1$). Now the language appearing in the RHS of equation (\dagger) is not regular because its homomorphic image obtained by mapping $A \rightarrow A, B \rightarrow B, S \rightarrow \epsilon$ and $X \rightarrow B$, which is simply

$$
\left\{A^{n-1} B^{n} \mid n \in \mathbb{N}\right\}
$$

is not regular.

Next, consider the following simple grammar.

$$
\begin{aligned}
& S \rightarrow X Y \\
& X \rightarrow a \\
& Y \rightarrow a
\end{aligned}
$$

and clearly

$$
\left\{\alpha \in N^{*} \mid S \xrightarrow{*} a \alpha\right\}=\{Y\}
$$

which is clearly regular. So this shows that the given language may or may not be regular.
3. Ogden's lemma is a generalisation of the pumping lemma for context free languages that gives you more control over which portion of the word gets pumped. It states that if L is a context free language, then there is a constant n such that if z is any string of length at least n in L, for any choice of at least n positions of z marked as distinguished, we can write $z=u v w x y$ such that:
(1) $v w x$ has atmost n distinguished positions.
(2) $v x$ has atleast one distinguished position.
(3) For all $i, u v^{i} w x^{i} y$ is in L.

Prove Ogden's Lemma.
Hint: Can you modify the proof of pumping lemma for CFL's to prove this?
Solution. I still have to prove this in my own words. However, I found a link containing a proof.
4. Prove the following language is not context free using Ogden's Lemma. Can this be shown using the usual pumping lemma for context free languages? Where does the argument fail there?

$$
L=\left\{a^{i} b^{j} c^{k} d^{l} \mid i=0, \text { or } j=k=l\right\}
$$

Hint: For the proof via Ogden's lemma, given pumping length n, choose a long enough word in the language which contains atleast one a, and none of the distinguished positions are an a.

Solution. For the sake of contradiction, suppose the given language is context free. Let n be the pumping length as guaranteed by Ogden's Lemma. Consider the following word:

$$
a b^{n+1} c^{n+1} d^{n+1}
$$

which clearly belongs to our language. Let all the $b^{\prime} \mathbf{s}, c^{\prime}$ s and d^{\prime} s be marked as the distinguished positions (so clearly we have marked atleast n positions). So we can write this word as uvwxy where the conditions provided by Ogden's Lemma are satisfied, namely: $v x$ contains atleast one distinguised position, $v w x$ contains atmost n distinguished positions and $u v^{i} w x^{i} y$ is in L for all $i \geq 0$. Now, consider the subword $v w x$. Observe that this subword does not contain atleast one of b, c or d, for if it contained all these three symbols, it would mean that (since the subword $v w x$ is continguous) $v w x$ contains all of the $n+1 c^{\prime} \mathbf{s}$, which contradicts the fact that $v w x$ contains atmost n distinguised positions. Without loss of generality, suppose the word $v w x$ does not contains the symbol d. Also by one of the conditions, we see that $v x$ contains atleast one of the symbols b or c. So, if i is large enough, it would mean that the word $u v^{i} w x^{i} y$ contains more
number of b 's or c^{\prime} s than $d^{\prime} \mathbf{s}$, which contradicts the fact that $u v^{i} w x^{i} y$ is in L (since this word contains atleast one a). So this shows that the given language is not context free, completing the proof.

Now if we tried to apply the normal pumping lemma, we could break down the word as

$$
a b^{n+1} c^{n+1} d^{n+1}=u v w x y
$$

where $u=\epsilon, v=a, w=\epsilon, x=\epsilon$ and $y=b^{n+1} c^{n+1} d^{n+1}$. In that case, all words $u v^{i} w x^{i} y$ will be accepted. So by using the idea of distinguished positions, we are able to control the breaking down of the word more.
5. Prove that any context-free language L over the alphabet $\Sigma=\{a\}$ is regular. Hint: By pumping lemma we know there exists a pumping length p. Can words of size greater than p be collected into a finite union of regular languages?

Solution. To be completed

