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1. Construct PDAs for the following languages.
(a) L = {anbmcmdn | m,n ∈ N}.

Solution. Let Σ = {a, b, c, d} and let Γ = {⊥, A,B,C,D}. We will make a PDA with
five states, namely Sa, Sb, Sc, Sd and Sfinal. Let the starting state be Sa, and the
only final state will be Sfinal. The transitions will be as follows.

(Sa,⊥)
a−→ (Sa, A ⊥)

(Sa, A)
a−→ (Sa, AA)

(Sa, A)
b−→ (Sb, BA)

(Sb, B)
b−→ (Sb, BB)

(Sb, B)
c−→ (Sc, ϵ)

(Sc, B)
c−→ (Sc, ϵ)

(Sc, A)
d−→ (Sd, ϵ)

(Sd, A)
d−→ (Sd, ϵ)

(Sd,⊥)
ϵ−→ (Sfinal,⊥)

Let me explain the reasoning behind these transitions. We start in the state Sa

with the stack being empty. If we read the letter a, we keep pushing the symbol
A on the top of the stack. Then, if we encounter b, we keep pushing the symbol
B on the top of the stack. Next, when we encounter a c, we keep popping the
symbolB from the top of the stack, and when we encounter d, we keep popping
A from the top of the stack. The transitions are arranged in such a way that if
we reach the state (Sd,⊥), a word of the form anbmcmdn has been read, where
n,m ∈ N. So, non-deterministically, we can go from (Sd,⊥) to (Sfinal,⊥) to accept
the word.

(b) Strings over the alphabet Σ = {1,+,=} that denote valid equations of sums
of unary numbers. Eg:

11111 + 111 = 11 + 11 + 1111

Solution. The idea here is simple: we just need to count the total number of 1′s
on either side of the equation, since we are dealing with unary numbers only.
So, in the LHS as we read 1′s, we will keep pushing them on top of our stack,
and the + signs will essentially be ignored. When an = sign is read, we must
configure the PDA so that if a 1 is read after, we pop it from the top of the stack
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(and continue to ignore the + signs). So, let Σ = {1,+,=} and let Γ = {⊥, O}
(the O stands for one). Our PDA will contain five states, s, t, t+, e and f , where
the starting state will be s and the only final state will be f . The transitions are
described below.

(s,⊥)
=−→ (t,⊥)

(s,⊥)
1−→ (s,O ⊥)

(s,O)
1−→ (s,OO)

(s,O)
+−→ (s,+O)

(s,+)
1−→ (s,O)

(s,O)
=−→ (e,O)

(e,O)
1−→ (t, ϵ)

(t, O)
1−→ (t, ϵ)

(t, O)
+−→ (t+, O)

(t+, O)
1−→ (t, ϵ)

(t,⊥)
ϵ−→ (f,⊥)

And letme explain the transitions. The first transition ensures that the equation
ϵ = ϵ is accepted. The next four transitions describe the action of the PDA on the
LHS: there cannot be consecutive+ signs, and the equationmust begin and end
with a 1. Finally, if we encounter an= sign, we jump to the state e, to ensure that
the next acceptable symbol is only 1. The last three states describe the action
of the PDA on the RHS. The point of t+ is to ensure that no consecutive + signs
are read. Finally, any word that ends up in (t,⊥) is a valid equation.

(c) L = {w | (w)a = (w)b and (w)a is even}.

Solution. LetΣ = {a, b} and let Γ = {⊥, A,B}. Our PDAwill contain three states,
namely Se, So and f (Se stands for even number of a′s and So stands for odd
number of a′s). The initial state will be Se and the only final state will be f . The
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transitions are given below.
(Se,⊥)

a−→ (So, A ⊥)

(Se,⊥)
b−→ (Se, B ⊥)

(Se, A)
a−→ (So, AA)

(Se, A)
b−→ (Se, ϵ)

(Se, B)
a−→ (So, ϵ)

(Se, B)
b−→ (Se, BB)

(So,⊥)
a−→ (Se, A ⊥)

(So,⊥)
b−→ (So, B ⊥)

(So, A)
a−→ (Se, AA)

(So, A)
b−→ (So, ϵ)

(So, B)
a−→ (Se, ϵ)

(So, B)
b−→ (So, BB)

(Se,⊥)
ϵ−→ (f,⊥)

and the reasoning behind the transitions is rather straightforward: each time
we read an a or b, we push anA orB or pop anA orB from the stack depending
upon which letter is dominating. If we read an a, we switch from Se to So and
vice-versa. Finally, any word that ends up in (Se,⊥) is of the given form, and
hence we can accept it.

2. Let G be a grammar in CNF. Let a ∈ Σ, X ∈ N . Is the language

{α ∈ N∗ | X ∗−→ aα}
a regular language? Why/Why not?

Solution. The answer is that it may ormay not be regular. I will give an example
supporting each case. First, consider the following grammar, which is evidently
in CNF:

S → AB | AX
X → SB

A → a

I claim that
{α ∈ N∗ | S ∗−→ aα} = {An−1Bn|n ∈ N} ∪ {An−1SBn|n ∈ N} ∪ {An−1XBn−1}(†)

(I am not proving this, but it is not hard to see that any sentencial form that
is generated by S is of the form AnBn , AnSBn or AnXBn−1 for n ≥ 1). Now
the language appearing in the RHS of equation (†) is not regular because its
homomorphic image obtained by mapping A → A, B → B, S → ϵ and X → B,
which is simply

{An−1Bn | n ∈ N}
is not regular.
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Next, consider the following simple grammar.
S → XY

X → a

Y → a

and clearly
{α ∈ N∗ | S ∗−→ aα} = {Y }

which is clearly regular. So this shows that the given language may or may not
be regular.

3. Ogden’s lemma is a generalisation of the pumping lemma for context free
languages that gives you more control over which portion of the word gets
pumped. It states that if L is a context free language, then there is a constant
n such that if z is any string of length at least n in L, for any choice of at least n
positions of z marked as distinguished, we can write z = uvwxy such that:

(1) vwx has atmost n distinguished positions.
(2) vx has atleast one distinguished position.
(3) For all i, uviwxiy is in L.

Prove Ogden’s Lemma.
Hint: Can you modify the proof of pumping lemma for CFL’s to prove this?
Solution. I still have to prove this in my own words. However, I found a link
containing a proof.

4. Prove the following language is not context free using Ogden’s Lemma. Can
this be shownusing theusual pumping lemma for context free languages? Where
does the argument fail there?

L = {aibjckdl | i = 0, or j = k = l}

Hint: For the proof via Ogden’s lemma, given pumping length n, choose a long
enough word in the language which contains atleast one a, and none of the dis-
tinguished positions are an a.

Solution. For the sake of contradiction, suppose the given language is context
free. Let n be the pumping length as guaranteed by Ogden’s Lemma. Consider
the following word:

abn+1cn+1dn+1

which clearly belongs to our language. Let all the b′s, c′s and d′s be marked
as the distinguished positions (so clearly we have marked atleast n positions).
So we can write this word as uvwxy where the conditions provided by Ogden’s
Lemma are satisfied, namely: vx contains atleast one distinguised position, vwx
contains atmost n distinguished positions and uviwxiy is in L for all i ≥ 0. Now,
consider the subword vwx. Observe that this subword does not contain atleast
one of b, c or d, for if it contained all these three symbols, it would mean that
(since the subword vwx is continguous) vwx contains all of the n + 1 c′s, which
contradicts the fact that vwx contains atmost n distinguised positions. Without
loss of generality, suppose the word vwx does not contains the symbol d. Also
by one of the conditions, we see that vx contains atleast one of the symbols b or
c. So, if i is large enough, it would mean that the word uviwxiy contains more

http://www.cs.nthu.edu.tw/~wkhon/assignments/assign2ans.pdf
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number of b’s or c′s than d′s, which contradicts the fact that uviwxiy is inL (since
this word contains atleast one a). So this shows that the given language is not
context free, completing the proof.
Now if we tried to apply the normal pumping lemma, we could break down the

word as
abn+1cn+1dn+1 = uvwxy

where u = ϵ, v = a, w = ϵ, x = ϵ and y = bn+1cn+1dn+1. In that case, all words
uviwxiywill be accepted. So by using the idea of distinguished positions, we are
able to control the breaking down of the word more.

5. Prove that any context-free language L over the alphabetΣ = {a} is regular.
Hint: By pumping lemma we know there exists a pumping length p. Can words
of size greater than p be collected into a finite union of regular languages?

Solution. To be completed
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