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These are my course notes for the course TOPOLOGY that I undertook in my fourth
semester.
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1. Basic Concepts

1.1. Introductory Definitions. Let X be any set. A topology J on X is a collection
of subsets of X satisfying the following.

(1) φ,X ∈ J .
(2) J is closed under arbitrary unions.
(3) J is closed under finite intersections.

Example 1.1. Consider the set of real numbers R, and let the topology on R be the
collection of all open intervals in R. It is then easily seen that these open sets satisfy
the three axioms in the definition of a topology, and this is called the standard topology
on R.

Example 1.2. Let X be any set. The power set P(X) forms a topology on X, and
this is called the discrete topology. Analogously, there is something called the indiscrete
topology, which is just the collection {φ,X}. These are respectively the largest and
the smallest topologies that we can have on a set X.

Example 1.3. Let X be any set, and put

J := {U ⊆ X | X \ U is finite} ∪ {φ}

Using De-Morgan’s Laws, it is easy to see that J is a topology on X, and this is called
the Zariski Topology. In the above definition, we can replace the word finite by the
word countable as well. That topology is called the countable complement topology.

Exercise 1.1. Compare the Zariski topology and the standard topology on R.

Solution. We show that the Zariski Topology is coarser (i.e smaller) than the standard
topology on R. To show this, suppose U is an open subset in the Zariski topology, so
that R \ U is a finite set. Suppose R\ = {a1, ..., an}, where we assume without loss of
generality that a1 < a2 < ... < an. So, it follows that

U = (−∞, a1) ∪ (a1, a2) ∪ ... ∪ (an,∞)

and hence U is a member of the standard topology. So, it follows that the Zariski
topology is coarser. It is easy to see that these topologies are not equivalent.

Example 1.4. Let (X, d) be any metric space. For x0 ∈ X and r ∈ R with r > 0, we
define

Bx0(r) := {x ∈ X | d(x, x0) < r}
These are called open balls. Then the set of all unions of open balls in X form a
topology on X, i.e the set

Jmetric := {union of open balls in X}

is a topology on X. Let us now prove this. It is clear that φ,X ∈ Jmetric. By the
definition of Jmetric, it is closed under taking arbitrary unions. Finally, we need to show
the closure under finite intersections. Suppose M is a finite intersection of unions of
open balls, i.e

M =

( ∪
α1∈J1

Bα1

)
∩

( ∪
α2∈J2

Bα2

)
∩ ... ∩

( ∪
αn∈Jn

Bαn

)
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where J1, ..., Jn are indexing sets and each Bαi
is an open ball in X. It is then easy to

see that
M =

∪
(α1,...,αn)∈J1×...×Jn

(Bα1 ∩ ... ∩Bαn)

Now here is the key property to use: any finite intersection of open balls in X is itself
a union of open balls, and this is immediately seen because if x ∈ Bα1 ∩ ...∩Bαn , then
there is a ball B such that x ∈ B ⊆ Bα1 ∩ ... ∩ Bαn . Then, we can simply take the
union of all such open balls B ranging over all x ∈ Bα1 ∩ ...∩Bαn , and that expresses
this finite intersection as a union of open balls. So, it then follows that M is a union
of open balls, and this proves that Jmetric is indeed closed under finite intersections.
So, Jmetric forms a topology.
Example 1.5. Let X be any set. Then, the discrete topology on X is a metric
topology, where the metric is simply the discrete metric on X. On the other hand,
the indiscrete topology on X is a metric topology if and only if |X| = 1. This is easy
to see.
Definition 1.1. Let X be a topological space and let Y ⊆ X be a subset. Define

JY := {U ∩ Y | U is open in X}
Then JY is a topology on Y and is called the subspace topology on Y (the fact that JY
is indeed a topology on Y is relatively straightforward to check).
Definition 1.2. Let X be a set. A collection B of subsets of X is called a basis for a
topology on X if:

(1) X is the union of elements of B.
(2) If B1, B2 ∈ B and x ∈ B1 ∩ B2, there exists some B3 ∈ B such that x ∈ B3 ⊆

B1 ∩B2.
Definition 1.3. Let B be a basis for a topology on X. Then, consider the set JB
defined as below.

JB := {U ⊆ X | ∀x ∈ U ∃B ∈ B s.t x ∈ B ⊆ U}
JB is said to be the topology generated by B.
Proposition 1.1. Let B be a basis for a topology on X, and let JB be the topology
generated by B. Then JB is indeed a topology on X.
Proof. It is vacuously true that φ ∈ JB, and since B is a basis for a topology on X, it
follows that X ∈ JB. Next, we show that JB is closed under taking arbitrary unions.
But we can show something stronger: any element of JB is a union of sets in B. To
show this, suppose U ∈ JB, and let x ∈ U . Then, there is some B ∈ B such that
x ∈ B ⊆ U . Taking the union of all such B as x ranges over U , we see that U is
the union of sets in B. So, it follows that JB is closed under taking arbitrary unions.
Finally, we show that JB is closed under taking intersections. So, let U1, ..., Un ∈ JB,
so each Ui is a union of elements of B. Then, proceed as in Example 1.4 to show that
U1 ∩ ... ∩ Un is a union of sets in B, and this is where property (2) of Definition 1.2
comes into play. This completes the proof. ■
Proposition 1.2. Let X be a set and let B be a basis for a topology on X. Then, a
set U is open in the topology JB if and only if U is equal to the union of sets in B.
Proof. The forward direction of the claim was proven in Proposition 1.1 above. The
backward direction is immediate from the fact that JB is a topology on X. ■
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Example 1.6. Let B′ = {[a, b) | a, b ∈ R}. This is a basis for some topology on
R, and this is called the lower limit topology Rl. We will show that the lower limit
topology is strictly finer than the standard topology on R. To show this, let (a, b) be
any interval in R. We can write this interval as

(a, b) =
∪
n∈N

[
a+

1

n
, b

)
It is strictly closed because [a, b) cannot be written as a union of open intervals in R,
because [a, b) is not an open set with respect to the metric on R (and we know that
the metric topology and the standard topology in R are equivalent).

Example 1.7. Here we introduce a topology on R which will be denoted by RK . Let

B = {(a, b) | a, b ∈ R} ∪ {(a, b) \K | a, b ∈ R}

where

K =

{
1

n
| n ∈ N

}
First, we show that B is a basis for a topology on R. Clearly, R can be written as a
union of sets in B. Next, we show that property (2) of Definition 1.2 is satisfied. So,
let B1, B2 ∈ B. We have the following cases.

(1) B1 = (a, b) and B2 = (c, d) for some a, b, c, d ∈ R. If x ∈ B1 ∩ B2, then there
is some open interval containing x contained in B1 ∩ B2. So this case can be
handled.

(2) B1 = (a, b) and B2 = (c, d)\K. In this case, take x ∈ B1∩B2, and let B be an
open interval such that x ∈ B ⊆ B1 ∩ (c, d). Then, just consider the interval
the set B \K. So this case is also handled.

(3) In this case, B1 = (a, b) \K and B2 = (c, d) \K. This case is handled similar
to case (2).

So, B is indeed a basis to a topology in R. We will now show that RK is strictly finer
than the standard topology of R. To show this, it is enough to show that (−1, 1) \K
cannot be written as a union of open intervals in R. This is because (−1, 1) \K is not
open in the metric topology of R (look at the point 0).

1.2. Product Topology. Here we will introduce a way to construct topology on the
cartesian product of sets.

Proposition 1.3. Let X,Y be topological spaces, and consider the set X × Y . Let

B = {U × V | U ⊆ X,V ⊆ Y are open sets}
Then, B is not a topology because it is not closed under union. However, B is a basis
for a topology on X × Y .

Proof. We will only show that property (2) in Definition 1.2 holds, because property
(1) clearly holds. But property (2) holds because if U1 × V1 and U2 × V2 are two sets
in B, then

U1 × V1 ∩ U2 × V2 = (U1 ∩ U2)× (V1 ∩ V2) ∈ B
because of the finite intersection closure property of topological spaces. This completes
the proof. ■
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Definition 1.4. The topology generated by the set B as in Proposition 1.3 is called
the product topology on X × Y . This extends to a finite product X1 × ... × Xn of
topological spaces, where a basis for the topology on X1 × ...×Xn is given by

B = {U1 × ...× Un | Ui ⊆ Xi is open}
Example 1.8. We show that the product topology on R2 is the same as the metric
topology on R2 given by the Euclidean metric. Note that the basis for the product
topology is all sets of the form A×B, with A,B ⊆ R open sets, and the basis for the
metric topology is the set of all open balls in R2. Keeping this in mind, we do the
following.

Let B be any open ball in R2 centered at a point x0 ∈ R2 containing a point x ∈ R2,
and let the radius of B be r > 0. So, consider the ball B(x, r− d(x0, x)); observe that
0 < r − d(x0, x) < r, so this ball makes sense. Clearly, we have that

B(x, r − d(x0, x)) ⊆ B

Put δ = r − d(x0, x), so our ball of consideration is B(x, δ) ⊆ B. Write x = (x1, x2)
where x1, x2 ∈ R. Now, consider the product(

x1 −
δ

2
, x1 +

δ

2

)
×
(
x2 −

δ

2
, x2 +

δ

2

)
=: A×B

It is very easy to see that A×B ⊆ B(x, δ) ⊆ B. What we have just shown is that the
product topology is finer than the metric topology.

Now, let us prove the converse, i.e the metric topology is finer than the product
topology, and that will prove the equivalence. So, let A×B be any product with A,B
being open subsets of R, and let x ∈ R2 be a point in A × B. Write x = (x1, x2), so
that x1 ∈ A and x2 ∈ B. Since A and B are open in R, there are δ1, δ2 > 0 such that

(x1 − δ1, x1 + δ1) ⊆ A , (x2 − δ2, x2 + δ2) ⊆ B

Put δ = max{δ1, δ2}. Then, it is straightforward to check that
x ∈ B(x, δ) ⊆ A×B

So, it follows that the metric topology is finer than the metric topology. This completes
our proof.

Exercise 1.2. Let X,Y be two topological spaces. Let BX , BY be bases for the
topologies on X and Y respectively. Let

B′ := {B1 ×B2 | B1 ∈ BX , B2 ∈ BY } ⊆ B
Show that B′ generates the product topology on X × Y .

Solution. Let’s first show that B′ is a basis for some topology on X × Y , and then
we will show that the topology generated is the product topology. First, we show that
X × Y can be written as a union of elements of B′. So, suppose∪

α∈I

Bα = X ,
∪
β∈J

Bβ = Y

where Bα ∈ BX for each α, and Bβ ∈ BY for each β. So, it follows that∪
(α,β)∈I×J

Bα ×Bβ = X × Y

and this shows that X × Y is a union of elements of B′. Next, suppose B1 × B2 ∈ B′

and B′
1 × B′

2 ∈ B′, and suppose (x, y) ∈ B1 × B2 ∩ B′
1 × B′

2. Then, there is some
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B′′
1 ∈ BX such that x ∈ B′′

1 ⊆ B1 ∩ B′
1. Similarly, there is some B′′

2 ∈ BY such that
y ∈ B′′

2 ⊆ B2 ∩B′
2. So, it follows that

(x, y) ∈ B′′
1 ×B′′

2 ⊆ B1 ×B2 ∩B′
1 ×B′

2

and hence it follows that B′ is indeed a basis for some topology on X × Y . Now, we
show that this is nothing but the product topology. Note that it is clear that B′ is
coarser than the product topology. Now, suppose U1 ×U2 is any basic open set in the
product topology. So, we can write∪

α∈I

Bα = U1 ,
∪
β∈J

Bβ = U2

and hence ∪
(α,β)∈I×J

Bα ×Bβ = U1 × U2

So, it follows that the product topology is coarser than B′. This completes our proof.

Definition 1.5. Let X,Y be topological spaces. Then a map f : X → Y is said to
be continuous if f−1(U) is open in X for all open sets U ⊆ Y .

Exercise 1.3. Let X,Y be topological spaces. Then show that the product topology
is the coarsest topology on X × Y such that both projections p1 : X × Y → X, p2 :
X × Y → Y are continuous.

Solution. Let B be any topology on X ×Y such that both the projection maps p1, p2
are continuous. It is enough to show that the set U1 × U2 is open in X × Y , where
U1, U2 are open sets in X and Y respectively. But, observe that

U1 × Y = p−1
1 (U1) , X × U2 = p−1

2 (U2)

So, both sets U1 × Y and X × U2 are open in X × Y . So, it follows that
U1 × U2 = U1 × Y ∩X × U2

is open in X × Y , and this completes the proof.

1.3. Order Topology. Let X be any ordered set. An example will be X = R. For
a, b ∈ X, we have the usual notion of intervals.

(a, b) := {x ∈ X | a < x < b}
[a, b) := {x ∈ X | a ≤ x < b}

Now, let B = {(a, b) | a, b ∈ X}. The question is whether B is a basis for some
topology on X. The answer is no in general; as a counter example take X = Z>0.
Because X has a least element, namely the integer 1, we cannot write X as a union
of sets in B. To remedy this situation, we add new sets to B as follows.

B = {(a, b) | a, b ∈ X} ∪ {[a0, b) | b ∈ X} ∪ {(a, b0] | a ∈ X}
where a0 is the least element of X (if it exists), and similarly b0 is the greatest element
of x (if it exists). Then, it turns out that B is a basis for a topology on X, and this
is relatively easy to verify. The topology generated by the set B is called the order
topology on X.

Example 1.9. Consider the order topology on R; it turns out that this is the same as
the standard topology on R. This is clear, because R does not have any least element.
So, there are no sets of the form [a0, b) or (a, b0] in the basis.
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Example 1.10. Let X = R2, and we know that the metric topology on X is the
same as the product topology. We impose the so called dictionary order on X. For
(a, b), (c, d) ∈ R2, we say (a, b) ≤ (c, d) if a < c or a = c and b ≤ d. In other words,
this is just the lexicographic ordering. The topology induced by this ordering of R2 is
called the dictionary order topology. It can be checked that this topology is finer than
the standard topology, but the two are not equivalent.
Example 1.11. Let X = Z>0 with the usual ordering. We show that the order
topology on X is the discrete topology. To show this, it is enough to show that every
singleton set is open. If d ∈ Z>0 such that d > 1, then note that (d− 1, d+ 1) = {d}.
Moreover, {1} = [1, 2). Hence, it follows that this is the discrete topology.
Example 1.12. Consider the set X = {1, 2} × Z>0 with the dictionary ordering. In
the case, the order topology is not the discrete topology. To see this, observe that the
set {(2, 1)} is not open in this topology.
Example 1.13. Let I = [0, 1] ⊆ R and let X = I × I ⊆ R2. Then consider the
dictionary order topology on X and the subspace topology on X coming from the
dictionary order topology on R2. We claim that these two are not equivalent. To
see this, note that the vertical line segment between (0, 0) and (0, 1) in X is open in
the subspace topology, but it is not open in the dictionary order topology. It is also
not hard to see that the subspace topology is infact finer than the dictionary order
topology.
1.4. The Closure and Interior. Let X be a topological space, and let A ⊆ X be a
subset. We define the interior of A as

A◦ := union of all open sets contained in A

Similarly, the closure of A is defined as
A := intersection of all closed sets containing A

Clearly, these definitions imply that
A◦ ⊆ A ⊆ A

Definition 1.6. Let X be any topological space and let A ⊆ X be a subset. A point
x ∈ X is a limit point of A if every open set U ⊆ X containing x intersects A in some
point other than x, i.e if U ⊆ X is open and x ∈ U , then U ∩ A 6= φ, {x}.
Proposition 1.4. Let A ⊆ X be a subset of a topological space X. Let A′ denote the
set of limit points of A. Then A = A ∪ A′.
Proof. First, let x ∈ A ∪ A′. If x ∈ A, then clearly x ∈ A. So suppose x ∈ A′, i.e x
is a limit point of A. We want to show that x ∈ A. So, let C be any closed subset
of X containing A, and we want to show that x ∈ C. For the sake of contradiction,
suppose x ∈ Cc. Because Cc is open, it follows that Cc ∩ A contains a point different
from x, i.e Cc ∩ A 6= φ. But this contradicts the fact that A ⊆ C, and hence x /∈ Cc,
so that x ∈ C. This shows that x ∈ A, and hence A ∪ A′ ⊆ A.

To prove the reverse inclusion, suppose x ∈ A, i.e x is contained in every closed set
C containing A. In addition, suppose x /∈ A. Then, we show that x ∈ A′. So, let U be
any open subset of X containing x. We need to show that U ∩A 6= φ, {x}. Because by
assumption x /∈ A, it is enough to show that U ∩A 6= φ. For the sake of contradiction,
suppose U ∩A = φ, and this implies that A ⊆ U c. Since U c is closed, this implies that
x ∈ U c, and this is clearly a contradiction. So, it follows that U ∩ A 6= φ, i.e x ∈ A′.
We have just shown that A ⊆ A ∪ A′. This completes the proof. ■
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Exercise 1.4. Show that x is a limit point of A if and only if x ∈ A− {x}.
Solution. First, suppose x is a limit point of A, and let C be any closed set containing
A− {x}. We need to show that x ∈ C. For the sake of contradiction, suppose x /∈ C,
so that x ∈ Cc, which is an open set. So, it follows that Cc ∩ A 6= φ, {x}, and this
contradicts the fact that A− {x} ⊆ C. To, x ∈ C and hence x ∈ A− {x}.

Conversely, suppose x ∈ A− {x}. We show that x is a limit point of A. So let U
be any open subset of X containing x. We need to show that U ∩ A 6= φ, {x}, i.e U
contains a point other than x. Because x ∈ A− {x}, we see that either x ∈ A−{x} or
x ∈ (A−{x})′. Clearly, we see that x ∈ (A−{x})′. This implies that U∩(A−{x}) 6= φ,
i.e U ∩ {A − {x}} contains a point other than x, and hence U ∩ A contains a point
other than x. This shows that x ∈ A′, and completes our proof.
Definition 1.7. Let X be a topological space. Then X is said to be Hausdorff if for
any x, y ∈ X, there are open sets U, V ⊆ X such that x ∈ U , y ∈ V and U ∩ V = φ.
An open set containing a point x is called a neighborhood of x.
Example 1.14. R with the standard topology is clearly Hausdorff. More generally,
Rn with the product topology is Hausdorff. Also, the lower limit topology Rl and the
topology RK that we saw before are also Hausdorff.
Example 1.15. Any discrete topology is clearly Hausdorff. The indiscrete topology
is not Hausdorff if the space has more than two points.
Example 1.16. Let (X, d) be any metric space and let the topology in question be
the metric topology. We show that X is always a Hausdorff space. To show this, if
x, y ∈ X are any two points, then we can take balls centered at x and y with radius
d(x, y)/2.
Example 1.17. Let X be any ordered set, and we show that any order topology is
always Hausdorff. So, let x, y ∈ X and without loss of generality we assume that
x < y. Then, we a couple of cases, and symmetric cases can be handled similarly.

(1) In the first case, x is the smallest element of X and y is the greatest element
of X. This case has two subcases: in the first subcase, there is an element z
between x, y, i.e x < z < y. So, the required open sets are [x, z) and (z, y]. In
the second subcase, there is no element between x and y. Here, the required
open sets are simply [x, y) and (x, y].

(2) In the second case, x is the smallest element of X and y is not the greatest
element of X, i.e there is some y′ such that y < y′. Again, there are two
subcases. In the first subcase, there is an element z between x and y, i.e
x < z < y. In this case, the required open sets are [x, z) and (z, y′). In the
second subcase, there is no element between x and y. In this case, the required
open sets are [x, y) and (x, y′).

(3) In the third case, x is not the least element of X and y is not the greatest
element of X. This case can be handled in a similar way as above.

So, it follows that the order topology is indeed Hausdorff.
Example 1.18. Let X be any infinite set. Then X is not Hausdorff in the finite
complement topology. Suppose, for the sake of contradiction, that X is Hausdorff,
and let x, y ∈ X. So, there are disjoint open sets U, V in X such that x ∈ U and
y ∈ V . Now because U is open, U c is finite, and since V ⊆ U c, it follows that V is
finite. But, V is also open, which means that V c is finite. However, because X is an
infinite set, both V and V c cannot be finite. Hence, X is not a Hausdorff space.
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Proposition 1.5. Let X be any Hausdorff space. Then any finite subset of X is
closed.

Proof. Note that it suffices to show that every singleton set is closed. Let x ∈ X. To
show {x} is closed, it is equivalent to show X−{x} is open. For Y ∈ X−{x}, choose
a neighborhood Uy of y such that x /∈ Uy. Then X − {x} =

∪
y ̸=x Uy is open, and this

completes the proof. ■
The conclusion of the proposition is true with weaker hypothesis than Hausdorfness.
And that is what we will define now.

Definition 1.8. A topological space X is said to satisfy the T1 property if given
x 6= y ∈ X, there are neighborhoods Ux and Uy of x and y respectively such that
y /∈ Ux and x /∈ Uy.

Remark 1.5.1. Conditions like the T1 property are called separation axioms. The
name comes from the fact that these properties measure the extent upto which points
can be separated using open sets in a given space. The Hausdorff property is called
the T2 property.

Example 1.19. IfX is a Hausdorff space, then clearly it has the T1 property. However,
the converse of this is not true in general. As a counter example, let X be an infinite
set, and consider the finite complement topology on X. From Example 1.18, we know
that X is not a Hausdorff space. But it is not hard to see that X has the T1 property.

Exercise 1.5. Show that X is T1 if and only if every finite set in X is closed.

Solution. First, suppose that X is T1. It is enough to show that every singleton set
{x} is closed, i.e X −{x} is open. To do this, let y ∈ X −{x}, and let Uy be an open
subset of X that does not contain x. So, we see that

X − {x} =
∪

y∈X−{x}

Uy

and hence X − {x} is open, so that {x} is closed. Conversely, suppose every finite
subset of X is closed, and let x, y ∈ X be any two distinct points. Clearly, {x} and
{y} are both closed sets, and hence their complements are open. The complements
can taken to be the required neighborhoods.

Example 1.20. Let R be a non-zero commutative ring with unity. Let
X = Spec(R) := {prime ideals of R}

We define the Zariski topology on X as follows: if I ⊆ R is an ideal, put
V (I) := {P ∈ X | I ⊆ P}

and we define V (I) to be a closed set. Let us show that this is indeed a topology on
X. Because R is an ideal and is not contained in any prime ideal, we see that φ is a
closed set in this topology. Similarly, since the zero ideal is contained in every prime
ideal, we see that X is a closed set in this topology. Since, we show that a finite union
of closed sets is closed. So, let I1, ..., In be finitely many ideals of R, and consider the
corresponding sets V (I1), ..., V (In). We claim that

V (I1) ∪ V (I2) ∪ ... ∪ V (In) = V (I1 ∩ ... ∩ In)
To show this, suppose Ii ⊆ P for some 1 ≤ i ≤ n and P ∈ X. Then clearly,
I1 ∩ I2 ∩ ... ∩ In ⊆ P . Conversely, suppose I1 · I2 · ... · In ⊆ P for some prime ideal P .
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For the sake of contradiction, suppose P does not contain Ii for any 1 ≤ i ≤ n. Then,
there are elements x1, ..., xn such that xi ∈ Ii and xi /∈ P for every 1 ≤ i ≤ n. But
clearly, we see that x1...xn ∈ I1 ∩ ... ∩ In, and hence x1...xn ∈ P . Because P is prime,
this implies that xi ∈ P for some I, a contradiction. So, it follows that Ii ⊆ P for
some 1 ≤ i ≤ n, and this proves our claim. So, it follows that finite unions of closed
sets are closed.

Finally, we show that an arbitrary intersection of closed sets is closed. So, let∩
α

V (Iα)

be an arbitrary intersection of closed sets. We claim that∩
α

V (Iα) = V

(∑
α

Iα

)
So suppose there is some prime ideal P such that Iα ⊆ P for all α. It is then clear
that

∑
α Iα ⊆ P . The converse to this is trivial. Hence, this proves that this is a valid

topology on X.

Exercise 1.6. Find a ring R such that Spec(R) is not T1 in the Zariski topology.

Solution. Let R = C[t], and we will show that Spec(R) is not T1 by showing that the
set {0} is not closed in Spec(R), where 0 is the zero ideal (which we know is prime),
and clearly this will contradict the property in Exercise 1.5. To show this, suppose
{0} is closed, i.e {0} = V (I) for some ideal I ⊆ C[t]. This implies that I ⊆ 0, i.e
I = 0. But, we know that V (0) = Spec(R) 6= {0}, which is a contradiction. So, it
follows that {0} is not a closed set, and hence Spec(R) is not T1.

Example 1.21. Here is another example from ring theory: let R = C[t] Consider
the statement of Hilbert’s Nullstellensatz: an ideal I ⊆ C[t] is maximal if and only if
I = (t − α) for some α ∈ C. From this, we can say that maximal ideals of R are in
bijective correspondence with C. Now we have seen above that Spec(R) is not T1 in
the Zariski Topology.

Now, let
X = {maximal ideals of R} ⊆ Spec(R)

Then, we show that the subspace topology on X from the Zariski Topology on Spec(R)
is the same as the finite complement topology on X. To be completed.

Proposition 1.6. Let X, Y be any topological spaces.
(1) If X is Hausdorff and Z ⊆ X, then Z is also Hausdorff in the subspace topology.
(2) If X,Y are Hausdorff, then X × Y is also Hausdorff.

Proof. (1) is trivial. For (2), let (x1, y1) and (x2, y2) be any distinct points of X × Y .
Let U1, U2 be disjoint open neighborhoods of x1, x2 in X and let V1, V2 be disjoint open
neighborhoods of y1, y2 in Y . So, it follows that U1 × V1 and U2 × V2 are disjoint open
neighborhoods of (x1, y1), (x2, y2) in X × Y . So the claim is true. ■

1.5. Continuous functions. We have already seen the definition of continuous func-
tions in Definition 1.5. Let us look at some examples.

Example 1.22. Consider the identity map f : R → Rl, where as before Rl is the lower
limit topology. Clearly, this function is not continuous, because the inverse image of
[a, b) is itself, and this is not open in the standard topology. However, if we switch
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the domain and the codomain, i.e we consider the identity map g : Rl → R, then this
function is continuous, because Rl is finer than the standard topology.
Definition 1.9. A function f : X → Y is called a homeomorphism if f is continuous,
bijective and the inverse f−1 : Y → X is also continuous. In this case, X,Y are said
to be homeomorphic and we write X ∼= Y .
Remark 1.6.1. A bijective continuous function is not necessarily a homeomorphism.
Infact, Example 1.22 is a valid counterexample. Compare this situation with the one
we usually see in algebra, for instance in vector space, ring or group homomorphisms.
Another example is given below.
Example 1.23. Consider the unit circle S1 equipped with the subspace topology
induced by the metric topology on R2. Let [0, 1) be equipped with the subspace
topology induced by the standard topology on R. Consider the function f : [0, 1) → S1

given by
f(t) = (cos(2πt), sin(2πt))

It is clear that f is a continuous bijection. However, we show that f is not a homeo-
morphisms. To see this, consider the open set

[
0, 1

4

)
in [0, 1). Observe that f(U) is the

quarter of the boundary of the circle lying in the first quadrant, including the point
(0, 0), and this is clearly not open in S1, i.e f−1 is not a continuous function.
1.6. Arbitrary Products. Let J be any indexing set, and let {Xα}α∈J be a collection
of topological spaces. As a set, define

X :=
∏
α∈J

Xα = {(xα)α∈J | xα ∈ Xα}

We can now define two topologies on X.
(1) The first is called the product topology on X. Here, basic open sets are of the

form ∏
α∈J

Uα

where Uα ⊆ Xα is open for all α ∈ J , and Uα = Xα for all but finitely many
α ∈ J .

(2) The second one is called the box topology on X. Here, everything is the same
as above, except that we don’t have the finiteness condition.

Clearly, if J is a finite set, then the product and box topologies are the same.
Exercise 1.7. Let {Xα} be any family of Hausdorff spaces. Then∏

α

Xα

is Hausdorff in both product and box topologies.
Solution. Let (xα) and (yα) be any two distinct points in the cartesian product. So,
there is some β such that xβ 6= yβ. So, there are disjoint open sets Ux,β, Uy,β of Xβ

containing xβ and yβ respectively. So, the two sets∏
α

J1,α and
∏
α

J2,α

where J1,α = Xα for all α 6= β and J1,β = Ux,β and J2,α = Xα for all α 6= β and
J2,β = Uy,β are disjoint open subsets of the box/product topologies that contain (xα)
and (yβ) respectively.
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Proposition 1.7. Let A, Xα, α ∈ J be topological spaces and let f : A →
∏

α∈J Xα

be a map given by
f(a) = (fα(a))α∈J , fα : A→ Xα

and where
∏

αXα is given the product topology. Then, f is continuous if and only if
each fα is continuous.
Remark 1.7.1. This statement is only true if

∏
αXα is given the product topology,

and it doesn’t hold in the box topology. We will see why in the proof.
Proof. First, suppose f is a continuous function, and let πα :

∏
αXα → Xα be the

projection map. It is a trivial fact that πα is continuous in both the product and box
topologies. So, this means that

fα = πα ◦ f
is a continuous map from A to Xα, because the composition of continuous maps is
continuous. This proves the forward direction, and infact shows that the forward
direction holds even in the box topology.

Conversely, suppose each fα is a continuous map, and let U be any basic open set
in
∏

αXα. So, we see that U =
∏

α Uα, where all but finitely many α satisfy Uα = Xα.
Let α1, ..., αn be the finitely many indices which don’t satisfy Uα = Xα. It is easy to
see that

f−1(U) =
∩

1≤i≤n

f−1
αi

(Uαi
)

Now, each of the sets f−1
αi

(Uαi
) is an open set in A by the assumption. Since a finite

intersection of open sets is open, it follows that f−1(U) is open in A, and this is
precisely where the box topology won’t work. This completes the proof. ■
Example 1.24. We will now give a concrete example where each coordinate function
is continuous, but the given function is not continuous in the box topology. Let Rω

denote the product of countably infinite many copies of R (or simply the set of all
sequences in R), and let this space be equipped with the box topology. Consider the
map

f : R → Rω

given by t 7→ (t, t, t, ...). It is clear that each coordinate function is continuous, being
the identity function from R to itself. But, we claim that f is not continuous. To show
this, let

U = (−1, 1)×
(
−1

2
,
1

2

)
×
(
−1

3
,
1

3

)
× ... ⊆ Rω

Clearly, U is open in the box topology, since its a basic open set. Also, note that
0 ∈ f−1(U). Infact, it is clearly seen that f−1(U) = {0}, which is not open in R.
1.7. Connectedness. Let us now look at the notion of connectedness.
Definition 1.10. Let X be a topological space. A separation of X is a pair U, V of
open non-empty disjoint subsets of X such that X = U ∪V . X is said to be connected
if it has no separation.
Example 1.25. Here are some trivial examples.

(1) If X is discrete and has atleast 2 elements, then X is not connected.
(2) The subspace [−1, 0) ∪ (0, 1] of R is not connected.
(3) The subspace Q of R is not connected. Just take consider the sets (

√
2,∞)∩Q

and (−∞,
√
2) ∩Q. A similar argument shows that R \Q is not connected.
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We will now prove an alternate characterisation of connectedness, but we will need an
easy lemma to do so.

Lemma 1.8. Let A ⊆ Y ⊆ X, where X is any topological space. Then, the closure of
A in Y is equal to A ∩ Y , where A is the closure of A in X.

Proof. This is trivial, because A∩Y is the smallest closed set in Y that contains A. ■
Proposition 1.9. Let X be a topological space and let Y ⊆ X be a subspace. A pair
A,B of subsets of Y is a separation of Y if and only if A ∪ B = Y , A,B are disjoint
and neither contains a limit point of the other.

Proof. Let A,B be a separation of Y . Then, A and B are clearly both open and closed
in Y . So, we see by Lemma 1.8 that A = A ∩ Y , and hence A ∩ B = φ. This shows
that B doesn’t contain any limit point of A and vice-versa.

Conversely, suppose A,B are disjoint subsets of Y such that A∪B = Y and neither
contains a limit point of the other. To show that A,B is a separation of Y , it is enough
to show that A,B are open in Y .

We know that A ∩ B = φ. Hence, A ∩ Y = A, i.e A is closed in Y . Similarly, B is
closed in Y , and hence we are done. ■
Lemma 1.10. If two subspaces A,B form a separation of X and Y ⊆ X is a connected
subspace, then Y is contained entirely in A or entirely in B.

Proof. We have that Y = (Y ∩A) ∪ (Y ∩B), and both Y ∩A and Y ∩B are disjoint
open subsets of Y . Since Y is connected, one of the above sets must be empty, and
this proves the claim. ■
Theorem 1.11. Let X be a topological space, and let {Yα} be a collection of connected
subspaces of X such that

∩
α Yα 6= φ. Then,

∪
α Yα is a connected space.

Proof. For the sake of contradiction, let Y = A ∪ B be a separation of Y , where
Y =

∪
α Yα. Now, note that each Yα is connected, and hence by Lemma 1.10 we see

that Yα ⊆ A or Yα ⊆ B for all α. Now, we claim that either all Yα lie in A, or all
Yα lie in B. But this is clear, because their intersection is non-empty, and hence they
must all lie in one of A or B. Without loss of generality, suppose Yα ⊆ A for all α.
But, this implies that B = φ, contradicting the fact that A,B is a separation. This
completes the proof. ■
Remark 1.11.1. The above proof actually works with a weaker hypothesis: Yα∩Yβ 6=
φ for all α, β.

Theorem 1.12. Let A ⊆ X be a connected space, where X is not necessarily connected.
If A ⊆ B ⊆ A, then B is also connected. In simple words, if we have connected set,
then adjoining some or all of its limit points still results in a connected set.

Proof. For the sake of contradiction, suppose B = C∪D is a separation of B. Because
A is connected, we see that A ⊆ C or A ⊆ D by Lemma 1.10. Without loss of
generality suppose A ⊆ C. Since D is non-empty and A ⊆ C, we see that D contains
a limit point of A, because A = A ∪ A′. But, this clearly a contradiction, because D
is an open set containing a limit point of A, and hence it will intersect with A, i.e it
will intersect with C. So, it follows that B is connected. ■
Theorem 1.13. The image of a connected set under a continuous function is con-
nected.
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Proof. Let f : X → Y be a continuous map, where Y = f(X). For the sake of
contradiction, suppose Y = A ∪ B is a separation of Y . Clearly, it follows that
f−1(A)∪ f−1(B) is a separation of X, but this is a contradiction to the connectedness
of X. So, Y is connected. ■
Theorem 1.14. Let {Xα} be a family of connected topological spaces. Then

∏
αXα

is also connected, where this space is given the product topology.

Proof. We deal with two cases; the first case will be when we have a finite product,
and the second is where we have an arbitrary product.

(1) Finite products. Without loss of generality, we can assume that the product
has only two factors, and we can then induct on the number of factors. This
is true because of the obvious fact that

(X × Y )× Z ∼= X × Y × Z

So, let X,Y be any two non-empty connected spaces, and we wish to show that
X × Y is connected. Suppose (a, b) ∈ X × Y is fixed. Then we easily see that

X ∼= X × {b} , Y ∼= {x} × Y, ∀x ∈ X

Now for any x ∈ X, note that x ∈ X×{b}∩{x}×Y , and hence by Theorem
1.11 we see that X × {b} ∪ {x} × Y is connected for all x ∈ X. Finally, note
that

X × Y =
∪
x∈X

(X × {b} ∪ {x} × Y )

is connected by another application of Theorem 1.11, because (a, b) ∈ X ×
{b} ∪ {x} × Y for all x ∈ X. So, it follows that X × Y is a connected set.

(2) Next, we will deal with the case of arbitrary products. So, let {Xα} be a
family of non-empty connected topological spaces. Let (bα) ∈

∏
αXα = X be

any point (such a point exists by invoking the Axiom of Choice). Now, given
a finite set {α1, ..., αn} ⊆ J , define

Xα1,...,αn = {(xα) ∈ X | xα = bα ∀ α 6= α1, ..., αn}
It is then easily seen that

Xα1,...,αn
∼= Xα1 × ...×Xαn

and hence each Xα1,...,αn is a connected set. Now note that if {α1, ..., αn} ⊆ J
is any finite subset, then

(bα) ∈ Xα1,...,αn

So by Theorem 1.11, we see that

Y =
∪

{α1,...,αn}⊆J

Xα1,...,αn

is a connected set, where the union is taken over all finite subsets of J . Note
that we are not done yet, because X 6= Y in general. However, we show that

X = Y

To show this, we will show that any point of X is either in Y or is a limit point
of Y . So, let (aα) ∈ X. If (aα) ∈ Y , then we are done, and hence we assume
(aα) /∈ Y . So, we need to show that (aα) is a limit point of Y . Let

∪
α Uα = U

be any basic open set containing the point (aα). Since we are in the product
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topology, this means that Uα = Xα for all but finitely many α, and this is
where the box topology won’t work. We will show that

U ∩ Y 6= φ

Let α1, ..., αn ∈ J be those indices for which Uα = Xα does not hold. Define
the point (yα) ∈ X by

yα =

{
aα , α = α1, ..., αn

bα , otherwise
Then it is easily seen that (yα) ∈ Y ∩ U . So, it follows that X = Y and hence
by Theorem 1.12 we see that X is connected.

■
Example 1.26. In this example, we will show that Rω is not connected in the box
topology. This will show that the product topology is really needed in the statement
of Theorem 1.14. We will be assuming that R is connected, and this we will show in
the next section.

Let
U = {(an) ∈ Rω | (an) is a bounded sequence} 6= Rω

and we have that U 6= φ. We claim that U is both open and closed in the box topology.
Let a = (an) ∈ Rω. Define

Wa = (a1 − 1, a1 + 1)× (a2 − 1, a2 + 1)× ...

Clearly, Wa is a basic open set in the box topology in Rω. Moreover, we see that if
a ∈ U , then Wa ⊆ U and that if a /∈ U then Wa ⊆ Rω \ U . So, it follows that both U
and U c are open, i.e U is a non-empty open and closed subset of Rω, and hence Rω is
not connected.

1.8. A generalisation of reals being connected. In this section, our main goal
will be to prove that R is connected. We will actually prove a more general result, and
conclude the connectedness of R from this.

Definition 1.11. Let X be an ordered set. X is said to have the least upper bound
property if every non-empty, bounded above subset of X has a least upper bound in
X.

Definition 1.12. An ordered set X is said to be a linear continuum if X has the least
upper bound property and if x < y are in X, then there is some z ∈ X with x < z < y.

Theorem 1.15. Let L be a linear continuum in the order topology. Then L, every
interval in L and every ray in L are all connected.

Remark 1.15.1. An interval in L is a set of the form (α, β), [α, β], [α, β) or (α, β],
where α, β ∈ L. A ray is an interval which is unbounded in atleast one direction.

Proof. Let Y ⊆ L be a subspace of L, which is either L, an interval in L or a ray in L.
Note that Y is convex, i.e if a < b ∈ Y then [a, b] ⊆ Y . For the sake of contradiction,

suppose Y is not connected. Let Y = A ∪ B be a separation of Y . Let a ∈ A and
b ∈ B. Then, [a, b] = A0 ∪ B0 where A0 = A ∩ [a, b] and B0 = B ∩ [a, b]. Note that
A0, B0 are disjoint, non-empty open subsets of [a, b].

Note that A0 is bounded above in Y , by b for example. So let c = supA0 ∈ L. But
infact, c ∈ [a, b] because c ≥ a and c ≤ b. We claim that c /∈ A0 ∪B0.
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First, we show that c /∈ A0. For the sake of contradiction, suppose c ∈ A0. Then
c 6= b and infact c < b. So c = a or a < c < b. In either case, we have an interval
of the form [c, e) ⊆ A0. This is because A0 is open in [a, b]. Let z ∈ L be such that
c < z < e, and this is true by the linear continuum property. Hence z ∈ A0. But this
contradicts the fact that c = supA0. So, it follows that c /∈ A0.

Next, we show that c /∈ B0. To get a contradiction, suppose c ∈ B0. Then a 6= c,
and hence either c = b or a < c < b. In either case, we see that there is an interval
(d, c] ⊆ B0, and this is true because B0 is open in [a, b]. So, we see that d is an upper
bound of A0, which again contradicts the fact that c = supA0. So, c /∈ B0.

All of this means that c /∈ A0∪B0, which is clearly a contradiction because c ∈ [a, b].
Hence, it follows that Y must be connected. ■
Remark 1.15.2. The proof shows that any convex subset of a linear continuum is
connected.
Corollary 1.15.1. R in the standard topology is connected, because the standard
topology of R is equivalent to the order topology of R.
Corollary 1.15.2. I × I in the dictionary order topology is connected. I × I is also
connected in the standard topology.
Theorem 1.16 (Intermediate Value Theorem). Let f : X → Y be a continuous
function with X connected and Y ordered (and given the order topology). If a, b ∈ X
and γ ∈ Y is such that f(a) ≤ γ ≤ f(b), then there is some c ∈ X such that f(c) = γ.
Proof. This is an easy connectedness argument. First, observe that f(X) is connected
in the order topology on Y . To get a contradiction, suppose there is no c ∈ X such
that f(c) = γ, i.e γ /∈ f(X). Now, we can write

f(X) = {y ∈ f(X) | y < γ} ∪ {y ∈ f(X) | y > γ}
and it is easy to see that this form a separation of f(X), because each of the two sets
in the above union is non-empty and open in f(X).

It must be noted that this theorem has nothing to do with Theorem 1.15. ■
Corollary 1.16.1. Since [0, 1] is connected, we get the usual intermediate value the-
orem.
1.9. Path Connectedness. Here we see another important topological property,
which is a special type of connectedness.
Definition 1.13. Let X be a topological space and x, y ∈ X. A path from x to y is
a continuous function f : [0, 1] → X such that f(0) = x and f(1) = y.
Remark 1.16.1. The interval [0, 1] can be replaced by any closed interval [a, b] in R
with a < b, because [a, b] ∼= [0, 1].
Definition 1.14. A topological space X is said to be path-connected if there is a path
between any two points of X.
Proposition 1.17. If X is path connected, then X is connected. The converse is not
true in general (see Example 1.28 for a counterexample).
Proof. Suppose X is path connected, and for the sake of contradiction suppose X =
A ∪ B is a separation of X. Let a ∈ A and b ∈ B be any two points, and let f be a
path from a to b. Since f is continuous, the image f([0, 1]) is a subset of X. However,
note that f([0, 1]) intersects with both A and B, and this is clearly a contradiction to
Lemma 1.10. So, it follows that X is connected. ■
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Example 1.27. The unit ball Bn := {(x1, ..., xn) ∈ Rn | x21 + ... + x2n = 1} is path
connected, and infact the straight line path between any two points suffices.
Example 1.28. Let X = I × I in the dictionary order topology. We know that
X is connected by Theorem 1.15. We will show that X is not path-connected. Let
p = (0, 0) and q = (1, 1). Let f : [0, 1] → I×I be a continuous map such that f(0) = p
and f(1) = q. Then f([0, 1]) = I × I by the Intermediate Value Theorem 1.16.
Now for every x ∈ I, let Ux := f−1({x} × (0, 1)) ⊆ [0, 1]. Then Ux is a non-empty
open subset of [0, 1]. Now, there is some qx ∈ Q∩Ux. Consider the map g : [0, 1] → Q
given by g(x) = qx. Clearly, g is an injective map, because the Ux’s are disjoint. But
[0, 1] is uncountable, and hence this is a contradiction. So, X is not path connected.
Example 1.29. Here we will see the so called topologist’s sine curve. Define

S :=

{(
x, sin 1

x

)
| x ∈ (0, 1]

}
⊆ R2

Clearly, S is connected being the image of (0, 1] under a continuous function. Let S
be the closure of S in R2. We see that

S = 0× [−1, 1] ∪ S
S is also connected being the closure of a connected set. We show that S is not path
connected. We claim that there is no path from a point in 0× [−1, 1] to a point in S.
Let f : [0, 1] → S be a path such that f(0) ∈ 0× [−1, 1] and f(1) ∈ S. Put

A := {t ∈ [0, 1] | f(t) ∈ 0× [−1, 1]} ⊆ [0, 1]

Then A is a proper, non-empty closed subset of [0, 1] (proper because 1 /∈ A and
non-empty because 0 ∈ A). Let a = supA ∈ [0, 1]. So

f |[a,1] : [a, 1] → S

is a continuous function such that f(a) ∈ 0× [−1, 1] and f((a, 1]) ⊆ S. Since [a, 1] ∼=
[0, 1], we get a continuous function f : [0, 1] → S such that f(0) ∈ 0 × [−1, 1] and
f((0, 1]) ⊆ S. Let f(t) = (x(t), y(t)) where x, y : [0, 1] → R such that x(0) = 0,
y(0) ∈ [−1, 1] and x(t) > 0 for all t > 0 and y(t) = sin

(
1

x(t)

)
for all t > 0.

Let n ≥ 1. Choose u such that 0 < u < x
(
1
n

)
and sin

(
1
u

)
= (−1)n. By the

Intermediate Value Theorem there is some tn such that 0 < tn < 1
n

such that
x(tn) = u. Then y(tn) = sin

(
1

x(tn)

)
= (−1)n So, tn ∈ [0, 1] and tn → 0 but y(tn) =

(−1)n diverges, and this is a contradiction since y is a continuous function. So, the
sine curve is connected but not path connected.
Example 1.30. Our next example will be the comb space. Let K = { 1

n
| n ∈ N} and

put
C := [0, 1]× {0} ∪K × [0, 1] ∪ {0} × [0, 1]

and let
D := C − {0} × (0, 1)

and let p = (0, 1) ∈ D, and note that (0, 0) ∈ D. We claim that D is connected but
not path connected. C is called the comb space and D is called the deleted comb space.

Note that [0, 1]× {0} ∪K × [0, 1] is path connected, and hence it is connected. So
D is connected because p is a limit point of [0, 1]×{0}∪K× [0, 1]. Now we show that
D is not path connected. So suppose f : [0, 1] → D is a continuous function such that
f(0) = p.
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We will show that f([0, 1]) = {p}. Since {p} ⊆ D is closed, f−1(p) is closed in [0, 1].
If we show that f−1(p) is also open in [0, 1] then we are done. Let V ⊆ R2 be an
open set such that p ∈ V and V does not intersect the x-axis. Clearly, 0 ∈ f−1(V )
and f−1(V ) is open in [0, 1]. Let U be a basic open set in [0, 1] such that 0 ∈ U and
U ⊆ f−1(V ). So U is connected, and hence f(U) is connected. Suppose f(U) 6= {p},
and let q ∈ f(U) with q 6= p. Since q is not on the x-axis, we have q = 1

n
× t0 where

n ≥ 1 is an integer and t0 ∈ [0, 1].
Now choose r such that 1

n+1
< r < 1

n
. The sets (−∞, r) × R and (r,∞) × R cover

D. Since f(U) is connected, we see that f(U) ⊆ (−∞, r)× R or f(U) ⊆ (r,∞)× R.
This is a contradiction, because p, q ∈ f(U).

So, f(U) = {p} and f−1(p) is open in [0, 1].

Lemma 1.18. No two of the spaces (0, 1), [0, 1) and [0, 1] are homeomorphic.

Proof. If there is a homeomorphism f : [0, 1) → (0, 1) then we also have a homeomor-
phism f |(0,1) : (0, 1) → (0, 1)\f(0), which is a contradiction because (0, 1) is connected
and (0, 1) \ f(0) is not connected. ■

1.10. Compactness. Here we will see a generalisation of compactness in topological
spaces.

Definition 1.15. Let X be a space. A collection of subsets of X is a covering or a
cover of X if their union is X. An open covering is one in which each subset is open.

Definition 1.16. A space X is compact if every open cover of X contains a finite
subcover. This is the usual definition of compactness that we saw in metric spaces.

Definition 1.17. Let X be a topological space and Y ⊆ X. A covering of Y by open
sets in X is a collection of open sets in X such that Y is a subset of the union of the
collection.

Lemma 1.19. Let X and Y be such that Y ⊆ X. Then Y is compact if and only if
every covering of Y by open sets in X has a finite subcover.

Proof. First, suppose Y is compact. So, any open cover of Y (note, by an open cover,
we mean a cover using sets open in Y ) has a finite subcover. Now, let {Uα} be a
collection of open sets in X which cover Y . So, we immediately see that∪

α

(Uα ∩ Y ) = Y

and note that each Uα ∩ Y is open in Y . By our assumption, there are α1, ..., αn such
that

n∪
i=1

(Uαi
∩ Y ) = Y

and hence it follows that

Y ⊆
n∪

i=1

Uαi

showing the existence of a finite subcover. The converse is also similarly proven. ■

Proposition 1.20. If X is compact and Y ⊆ X is closed, then Y is also compact. In
simple words, closed subsets of compact sets is compact.
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Proof. Let O be a covering of Y by open sets in X. Then O∪{X \Y } is an open cover
of X. Since X is compact, there is a finite subcover. Discarding X \ Y , if needed, we
obtain a finite subcover of Y . ■
Proposition 1.21. If X is Hausdorff and Y ⊆ X is compact then Y is closed in X.
Proof. We show that X − Y is open in X. Let x ∈ X − Y . For each y ∈ Y , let Uy,
Vy be disjoint open sets such that x ∈ Uy and y ∈ Vy. So {Vy | y ∈ Y } is an open
cover of Y by open sets in X. Because Y is compact, there are y1, ..., yn ∈ Y such
that Y ⊆ Vy1 ∪ ... ∪ Vyn . Now let U = Uy1 ∩ Uy2 ∩ ... ∩ Uyn . Clearly, U is an open
neighborhood of x. Clearly, U ∩ Y = φ, so that U ⊆ X − Y . This completes the
proof. ■
Lemma 1.22. Let X be Hausdorff, and let Y ⊆ X be compact. For any x ∈ X − Y ,
there are disjoint open sets U, V ⊆ X such that x ∈ U and Y ⊆ V . So in simple
words, it is possible in a Hausdorff space to separate a compact set from a point in its
compliment.
Proof. The proof is exactly the same as in the previous proposition. Just take V =
Vy1 ∪ ... ∪ Vyn and U = Uy1 ∩ ... ∩ Uyn . ■
Example 1.31. By Proposition 1.21 we immediately see that the sets (a, b), [a, b)
and (a, b] are not compact in R, because R is Hausdorff.
Example 1.32. Let X be any set with the finite complement topology. We show that
any subset of X is compact. Let A ⊆ X be any subset, and let {Uα} be a covering of
A by open subsets of X. Let Uα be any of these sets in the open cover. If A ⊆ Uα,
then we are done. So, suppose A∩U c

α 6= φ. But, we know that U c
α is finite, and hence

A∩U c
α contains finitely many points. So we see that A ⊆ Uα∪Uα1 ∪ ...∪Uαn for some

α1, ..., αn, and hence we have extracted a finite subcover.
Theorem 1.23. Let f : X → Y be a continuous map. If X is compact, then f(X) is
also compact.
Proof. This is a simple proof which we have done many times before. ■
Corollary 1.23.1. If X and Y are homeomorphic, then X is compact if and only if
Y is compact.
1.11. Finite Products of Compact Spaces. In this section, we will study finite
products of compact spaces, and see whether they are compact.
Proposition 1.24 (Tube Lemma). Let X,Y be topological spaces, and suppose Y
is compact. Let N ⊆ X × Y be an open set such that x0 × Y ⊆ N for some x0 ∈ X.
Then there is an open set W ⊆ X such that x0 ∈ W and W × Y ⊆ N .
Remark 1.24.1. The set W ×Y is called a tube. This proposition basically says that
if Y is compact and if a vertical line sits inside an open subset of X × Y , then infact
a tube sits inside that open subset.
Proof. Because Y is compact, we know that x0 × Y is compact, because these are
homeomorphic spaces.

For every y ∈ Y , there is a basic open set U ×Y such that (x0, y) ∈ U ×V ⊆ N . So
we can cover x0×Y by finitely many basic open sets of the form U×V , each contained
in N . In other words, there are open sets U1, U2, ..., Un ⊆ X and V1, V2, ..., Vn ⊆ Y
such that

x0 × Y ⊆ (U1 × V1) ∪ ... ∪ (Un × Vn) , Ui × Vi ⊆ N ∀1 ≤ i ≤ n
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Let W = U1 ∩ U2 ∩ ... ∩ Un. Clearly, x0 ∈ W . We show that W × Y ⊆ N . To
see this, suppose (x, y) ∈ W × Y . Then (x0, y) ∈ Ui × Vi for some 1 ei ≤ n. Then
(x, y) ∈ Ui×Vi, and hence (x, y) ∈ N . This shows that W×Y ⊆ N , and this completes
the proof. ■

Theorem 1.25. Any finite product of compact spaces is compact.

Proof. Clearly, it suffices to show this for the product of two compact spaces, since the
argument can then be extended via induction.

So, let X,Y be compact spaces, and we will show that X×Y is a compact space. Let
O be an open cover of X×Y . Let x0 ∈ X. Now, observe that x0×Y is also a compact
set; hence, a finite subcollection of O covers x0 × Y , i.e there are A1, ..., An ∈ O such
that

x0 × Y ⊆ A1 ∪ A2 ∪ ... ∪ An =: N

By the Tube Lemma 1.24, there is an open set W ⊆ X containing x0 such that
W × Y ⊆ N

which means that W × Y is covered by A1, ..., An.
What we have shown is this: for all x ∈ X, there is an open set Wx ⊆ X containing

x such that Wx × Y is covered by finitely many elements of O. Now, the collection
{Wx}x∈X is an open cover of X and because X is compact, there are x1, ..., xm ∈ X
such that X = Wx1 ∪ ... ∪Wxm . So, it follows that finitely many elements of O covers
X × Y , and this completes the proof. ■

Exercise 1.8. Find an example where the Tube Lemma 1.24 fails.

Solution. Let X = Y = R, and so we are considering the space R2. Just take any
open subset of R2 whose width gets infinitesimally small; for instance, take the open
region in the first quadrant bounded by the graph of the function f(x) = 1/x and its
reflection around the y-axis.

1.12. Compact subsets of ordered sets with the LUB property. First, we look
at an alternate characterisation of compactness.

Definition 1.18. Let X be a topological space. A collection C of closed sets in
X is said to have the finite intersection property if for any finite number of sets
C1, ..., Cn ∈ C, it is true that C1 ∩ C2 ∩ ... ∩ Cn 6= φ.

Theorem 1.26. Let X be a topological space. Then, X is compact if and only if for
every collection C of closed sets in X having the finite intersection property, it is true
that ∩

C∈C

C 6= φ

Proof. First, suppose X is compact, and let C be any collection of closed subsets of X
having the finite intersection property. For the sake of contradiction, suppose∪

C∈C

C = φ

and taking complements, this means ∩
C∈C

Cc = X
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and hence we have an open cover of X. Because X is compact, there are finitely many
C1, C2, ..., Cn ∈ C such that

Cc
1 ∪ ... ∪ Cc

n = X

and taking complements, this implies that
C1 ∩ ... ∩ Cn = φ

which is a contradiction. This proves the forward direction.
Conversely, suppose for every collection C of closed subsets of X having the finite

intersection property, it is true that ∩
C∈C

C 6= φ

Let {Uα} be an open covering of X, i.e∪
α

Uα = X

Taking complements, we see that ∩
α

U c
α = φ

and hence by our assumption, it follows that {U c
α} cannot be a collection of closed sets

having the finite intersection property. This means that there are α1, ..., αn such that
U c
α1

∩ ... ∩ U c
αn

= φ

and taking complements, we have obtained a finite subcover, implying that X is com-
pact. This completes the proof. ■
Theorem 1.27. Let X be an ordered topological space satisfying the least upper bound
property. Then every closed interval in X is compact.

Proof. Let a, b ∈ X such that a < b. We show that [a, b] is compact. Let O be an
open cover of [a, b] by open sets in X. We will prove the claim in a series of steps.

(1) We show that for each x ∈ [a, b] with x 6= b, there is some y ∈ [a, b] such that
y > x and [x, y] is covered by atmost 2 elements of O. If x has an immediate
successor, say y ∈ X then we take [x, y] = {x, y} and atmost two elements
of O cover [x, y]. If x has no immediate successor, let A ∈ O be an open set
containing x. Then there is some c ∈ [a, b] such that x ∈ [x, c) ⊆ A such that
there is some y ∈ [x, c) with y > x (note that x 6= b is required for this). So,
we can just consider the interval [x, y].

(2) Let
C := {y ∈ (a, b] | [a, y] can be covered by finitely many elements of O}

By step (1), we see that C is non-empty. Let c = supC ∈ [a, b].
(3) We show that c ∈ C. Let A ∈ O such that c ∈ A. Then there is some d ∈ [a, b]

such that c ∈ (d, c] ⊆ A, i.e we know that d < c. Now, if C ∩ (d, c] = φ, then
this would imply that d is an upper bound of C, which is a contradiction. So,
it follows that C ∩ (d, c] 6= φ, and let z ∈ C ∩ (d, c]. Since z ∈ C, the set [a, z] is
covered by finitely many elements of O. But then, it follows that [a, c] is also
covered by finitely many elements of O, by simply adding the set A. Hence,
we see that c ∈ C.
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(4) Finally, we show that c = b. If c < b, then step (1) applied to c will show
that there is some y ∈ [a, b] with y > c such that [c, y] is covered by atmost
two elements of O. This means that y ∈ C, which contradicts the fact that
c = supC.

Step (4) implies that [a, b] can be covered by finitely many elements of O, and this
completes our proof. ■
Corollary 1.27.1. Every closed interval in R is compact.

Theorem 1.28 (Heine-Borel). A subset of Rn is compact if and only if it is closed
and bounded (in the Euclidean or the square metric).

Proof. Let ρ denote the square metric. Suppose A ⊆ Rn is compact. Since Rn is
Hausdorff, A is closed. Cover A by B(a, n) for a fixed a ∈ Rn and vary n ∈ N. This
shows that A is bounded in Rn.

Conversely, suppose A is closed and bounded in Rn. So, there is some N ∈ N such
that

A ⊆ Bρ(0, N) = [−N,N ]n

We know that [−N,N ] ⊆ R is compact, and that a finite product of compact spaces
is compact by Theorem 1.25, so it follows that [−N,N ]n is compact. So, A is closed
in [−N,N ]n, and hence A is compact. ■
Example 1.33. The sets Sn−1 , Bn (the closed ball) are all compact in Rn by the
above theorem.

Theorem 1.29. Let f : X → Y be a continuous function from a compact space X to
an ordered topological space Y . Then there are c, d ∈ X such that f(c) ≤ f(x) ≤ f(d)
for all x ∈ X.

Remark 1.29.1. This is a generalisation of the usual extreme value theorem.

Proof. We have to show that A = f(X) has a maximum and a minimum element.
If A has no maximum element, then the following is an open cover of A:

{(−∞, a) : a ∈ A}

Because A is compact, there are a1, a2, ..., an ∈ A such that
A ⊆ (−∞, a1) ∪ ... ∪ (−∞, an)

Let a = max{a1, ..., an}. Then a /∈ (∞, aj) for all j. But a ∈ A, and this is a
contradiction. So, it follows that there must be some maximum element. A similar
argument shows that there is some minumum element. ■

1.13. Some Familiar Results. In this section, we will topologically prove some re-
sults which are familiar in analysis.

Definition 1.19. Let (X, d) be a metric space, and let A ⊆ X be a non-empty subset.
For x ∈ X, define

d(x,A) := inf{d(x, a) | a ∈ A}
It can be shown that the map x 7→ d(x,A) is continuous.

Definition 1.20. Let φ 6= A ⊆ X be bounded. The diameter of A is defined as
diam(A) := sup{d(a, b) | a, b ∈ A}
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Proposition 1.30 (Lebesgue Number Lemma). Let (X, d) be a compact metric
space. Let O be an open cover of X. Then there is some δ > 0 such that for each
subset A ⊆ X of diameter ≤ δ, then there is some U ∈ O such that A ⊆ U .

Remark 1.30.1. Such a δ is called a Lebesgue number for the cover O.

Proof. Let O be an open cover of X. If X ∈ O, then take δ to be any positive real
number. So, we assume that X /∈ O. let {A1, ..., An} be a finite subcover of X, and
let Ci = X \ Ai. So we see that Ci 6= φ for each i. Define f : X → R given by

f(x) =
1

n

n∑
i=1

d(x,Ci)

i.e f(x) is the average distance of x from the sets Ci. It is easily seen that f is
continuous, being a sum of continuous functions. We claim that

f(x) > 0 , ∀x ∈ X

To prove this, let x ∈ X and let x ∈ Ai. Let ε > 0 be such that Bϵ(x) ⊆ A (possible
because Ai is open). Now, if y ∈ Ci, then y /∈ Ai and hence y /∈ Bϵ(x) which implies
that d(x, y) ≥ ε. This implies that

d(x,Ci) ≥ ε =⇒ f(x) ≥ ε

n
> 0

Let δ be the minimum value of f , which exists by Theorem 1.29 (X is compact), and
clearly δ > 0. We claim that δ is a Lebesgue number for the open cover O. To show
this, let B ⊆ X be a subset such that diam(B) ≤ δ. Let x0 ∈ B. So, we see that
B ⊆ Bδ(x0). Let d(x0, Cm) = max

i
{d(x0, Ci)}. Then, we see that

δ ≤ f(x0) =
1

n

∑
i

d(x0, Ci) ≤ d(x0, Cm)

and hence
Bδ(x0) ⊆ X \ Cm = Am

and hence we see that B ⊆ Am. ■
Theorem 1.31. Let f : (X, dX) → (Y, dY ) be a continuous map with X compact.
Then f is uniformly continuous.

Proof. Let ε > 0. Cover Y by the sets {B(y, ε/2) | y ∈ Y }. Let
O := the open cover given by {f−1(B(y, ε/2)) | y ∈ Y }

Let δ be the Lebesgue number for O (δ > 0, exists by the Lebesgue Number Lemma
1.30). Now let x0, x1 ∈ X with dX(x0, x1) < δ. Then diam{x0, x1} < δ. Hence there
is some y ∈ Y such that

{x0, x1} ⊆ f−1(B(y, ε/2))

which implies that
{f(x0), f(x1)} ⊆ B(y, ε/2)

which implies that
dY (f(x0), f(x1)) < ε

■
Definition 1.21. Let X be a space. A point x ∈ X is said to be an isolated point of
X if {x} is open in X.
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Proposition 1.32. Let X be a topological space. Then X has no isolated points if
and only if every point of X is a limit point of X.

Proof. First, suppose X has no isolated points, and let x be any point of X. Let W
be any open neighborhood of x. We need to show that W ∩X \ {x} 6= φ. But this is
clear, because x is not an isolated point of X. This shows that x is a limit point of X.

The converse is straightforward. This completes the proof. ■
Theorem 1.33. Let X be a nonempty compact Hausdorff space. If X has no isolated
points, then X is uncountable.

Proof. First, we show the following: given a non-empty open set U ⊆ X and x ∈ X,
there exists an open set V ⊆ X such that V ⊆ U , x /∈ V and V 6= φ. To prove this,
let y ∈ U such that y 6= x (such a point y exists because x is not isolated, in particular
U 6= {x}). By Hausdorffness, there are open sets W1,W2 such that x ∈ W1, y ∈ W2

and W1 ∩W2 = φ. Then we claim that the set V := U ∩W2 does the job. Clearly,
V is an open set, and it is non-empty because it contains the point y. Also, V ⊆ U
is clear. Finally, observe that x is not a limit point of V , because W1 ∩ V = φ, and
hence this means that x /∈ V . This proves the claim.

Now let f : N → X be a function. Let xn = f(n). Start with U = X and the point
x1. Applying the above claim, we see that there is some non-empty open set V1 such
that V1 ⊆ U and x1 /∈ V1. Continue with V1 and x2: there is some non-empty open set
V2 such that V2 ⊆ V1 and x2 /∈ V2. Continuing this way, we get a chain

V1 ⊇ V2 ⊇ V3 ⊇ · · ·
We know that Vi 6= φ for all i. So this collection of closed sets satisfied the finite
intersection property. Since X is compact, it follows from Theorem 1.26 that∩

i

Vi 6= φ

So take any x ∈
∩

i Vi. But this means that x 6= xi for all i ∈ N, which means that f
is not surjective. Hence, X cannot be countable, and this completes our proof. ■
Corollary 1.33.1. R is uncountable and (a, b) with a < b is uncountable.

1.14. Countability Axioms. Throughout, let X be a topological space.

Definition 1.22. Let x ∈ X. A collection of neighborhoods of x, say {Bα}, is said to
be a basis of open sets at x if every neighborhood of x contains some Bα.

Definition 1.23. Here we define some countability axioms.
(1) X is said to be first countable if every point of X has a countable basis.
(2) X is said to be second countable if X has a countable basis.
(3) X is said to be Lindelöf if any open cover of X has a countable subcover.
(4) X is separable if it has a countable dense subset.

Example 1.34. Rn is first countable, which is clear. In general, any metric space is
first countable.

Example 1.35. Rn and Rω are second countable.

Proposition 1.34. The following hold.
(1) A subspace of a first countable (respectively second countable) space is first

countable (respectively, second countable).



TOPOLOGY 25

(2) A countable product of first countable (respectively second countable) spaces if
first countable (respecitively second countable).

Proof. (1) is trivial. For (2), just use the fact that the set of finite subsets of a countable
set is countable. ■
Proposition 1.35. Second countability implies all other countability axioms.

Proof. If X is second countable, then it is clearly first countable. This is trivial.
Next, we show that every second countable space is Lindelöf. So, let O be any open

cover of X. Let {Bn}n∈N be a basis for X. For each n ≥ 1, choose An (if possible)
such that Bn ⊆ An (if this is not possible, then An is undefined). We claim that {An}
covers X. To show this, suppose x ∈ X. Now there is some A ∈ O such that x ∈ A.
Now, there is a Bn such that x ∈ Bn ⊆ A (this is true because {Bi} is a basis). This
means that An is defined and x ∈ An. So, we have extracted a countable subcover.

Next, we show that any second countable space is separable. Let {Bn} be a basis
of X. Choose xn ∈ Bn (if Bn is non-empty). Then {xn} is a countable dense subset.
This completes the proof. ■
Example 1.36. We show that Rl satisfies all countability axioms except the second.

(1) Rl is first countable: let x ∈ Rl and take
{[
x, x+ 1

n

)}
n∈N.

(2) Rl is separable because Q ⊆ Rl is a countable dense subset.
(3) Rl is Lindelöf: it suffices to show that an open cover of Rl by basic open sets

has a countable subcover. Let {[aα, bα)}α∈J be an open cover of Rl. Let

C :=
∪
α∈J

(aα, bα)

Then, we show that R\C is countable. To show this, suppose x ∈ R\C. Then
x = aα for some α ∈ J . Choose qx ∈ Q such that qx ∈ (aα, bα). So we see that

(x, qx) ⊆ (x, bα) = (aα, bα)

Let x, y ∈ R \ C.such that x < y, say y = aβ for some β ∈ J . We show that
qx < qy. For the sake of contradiction, suppose qy ≤ qx. This implies that
y < qy ≤ qx, implying that y ∈ (x, qx) ⊆ C, which is a contradiction. Hence, it
follows that qy > qx. So the map R−C → Q given by x 7→ qx is injective, and
hence R− C is countable.

Next, we claim that C is covered by countably many (aα, bα). We think of
C as a subspace of R. Since R is second countable, so is C by Proposition
1.34. Hence Proposition 1.35 implies that C is Lindelöf. So, C is covered by
a countable subcollection of {(aα, bα)}, say

C =
∪
n≥1

(an, bn)

Then it follows that
{[an, bn)}n≥1 ∪ {[aα, bα)}α∈R\C

is a countable subcover of Rl, and hence Rl is Lindelöf.
(4) Rl is not second countable: Let B be a basis for Rl. For x ∈ Rl, let Bx ∈ B

be such that x ∈ Bx ⊆ [x, x + 1). We claim that for x 6= y, Bx 6= By, because
we clearly see that x = inf Bx and y = inf By. So the map Rl → B given by
x→ Bx is injective, and hence B is uncountable.
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Example 1.37. In this example, we will show that R2
l is not Lindelöf. Let

L := {(x,−x) | x ∈ Rl} ⊆ R2
l

We see that L ⊆ R2
l is closed, because its complement is open. Take the following

open cover of R2
l :

{R2
l \ L} ∪ {[a, a+ 1)× [−a,−a+ 1) | a ∈ Rl}

This has no countable subcover, since for every point of L, we need a distinct element
of the open cover and L is uncountable.

Example 1.38. Let X = I2 in the dictionary order topology. By Theorem 1.27 we
know that X is compact. Hence X is Lindelöf. But we claim that Y := I × (0, 1) is
not Lindelöf. Observe that Y is covered by the sets {{x} × (0, 1)}x∈I and there is no
proper subcover, and this open cover is clearly uncountable. This example shows that
not all subspaces of Lindelöf spaces are Lindelöf.

1.15. Separation Axioms. An example of a separation axiom is Hausdorffness. We
will look at some more separation axioms here.

Definition 1.24. Let X be a topological space in which all singletons are closed.
(1) X is regular if given a point x ∈ X and a closed set A ⊆ X such that x /∈ A,

there exist disjoint open sets U and V such that x ∈ U , A ⊆ V .
(2) X is said to be normal if given two disjoint closed sets A and B in X, there

exist disjoint open sets U and V such that A ⊆ U and B ⊆ V .
Clearly, normal =⇒ regular =⇒ Hausdorff.

Remark 1.35.1. In the above definition, we wanted to have stronger properties than
Hausdorffness, and hence we required all singletons to be closed because in a Hausdorff
space all singletons are closed.

Exercise 1.9. Show that metric spaces are normal. In particular, Rn is normal.

Solution. This follows from part (2) of Theorem 1.38.

Proposition 1.36. Let X be a topological space where singletons are closed. Then the
following are true.

(1) X is regular if and only if given x ∈ X and a neighborhood U of x, there exists
a neighborhood V of x such that V ⊆ U .

(2) X is normal if and only if given a closed set A ⊆ X and an open set U ⊇ A,
there is an open set V such that A ⊆ V ⊆ V ⊆ U .

Proof. First we prove (1). So suppose the given property is true. Let x ∈ X and
A ⊆ X be a closed set such that x /∈ A. Now, the set Ac is open, and contains x. So,
there is some open set V such that x ∈ V ⊆ V ⊆ Ac. Let U = (V )c, and hence U is
an open set containing A. Clearly, U, V are the required disjoint open sets.

Conversely, suppose X is regular, and let x ∈ X and an open neighborhood U of
x be given. This means that U c is a closed set such that x /∈ U c. So, there are
disjoint open sets A,B in X such that x ∈ A and U c ⊆ B. Clearly, this means that
x ∈ A ⊆ A ⊆ U , and hence this shows that the given property is true. This completes
the proof.

Next, we prove (2). Suppose X is normal. Let A be a closed set, and let U be an
open set such that A ⊆ U . Let B = X − U . So, we see that A,B are disjoint. By
the normality of X, there are open disjoint sets V,W such that A ⊆ V and B ⊆ W .
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We claim that this V works; clearly, A ⊆ V . To prove V ⊆ U , we will show that
V ∩B = φ. This is true because of the following: if y ∈ B, then W is a neighborhood
of y such that W ∩ V = φ, which implies that y is neither a point of V nor a limit
point of V , and hence y /∈ V .

Conversely, suppoes the given condition is true, and we will show that X is normal.
So, let A,B be any disjoint closed sets in X. Let U = X − B. Then we see that
A ⊆ U . By hypothesis, there is some open set V such that A ⊆ V ⊆ V ⊆ U . Let
W = X − V . Then V ∩W = φ, and A ⊆ V , B ⊆ W . ■

Proposition 1.37. The following hold.
(1) A subspace of a regular space is regular.
(2) Any product of regular spaces is regular.

Remark 1.37.1. Recall that we proved these for Hausdorff spaces in Proposition
1.6 and Exercise 1.7.

Proof. Let us prove (1) first. So let X be any regular space, and let Y ⊆ X be any
subspace. We see that singletons are closed in Y . Let x ∈ Y and B ⊆ Y be closed
with x /∈ B. Because B ∩ Y = B (since B is closed in Y ), we see that x /∈ B. By the
regularity of X, there are disjoint open sets U, V ⊆ X such that x ∈ U and B ⊆ V .
Then just take the sets U ∩ Y and V ∩ Y .

Next, we prove (2). Let {Xα}α∈J be a family of regular spaces. Let X =
∏

α∈J Xα.
To prove that X is regular, we will be using part (1) of Proposition 1.36. Let
x = (xα) ∈ X and let U ⊆ X be an open neighborhood of X. Choose a basic open
set
∏
Uα such that x ∈

∏
Uα ⊆ U . For each α, choose a neighborhood Vα of xα such

that xα ∈ Vα ⊆ Vα ⊆ Uα (possible by Proposition 1.36, because each Xα is regular).
If Uα = Xα set Vα = Xα. Let V =

∏
Vα. Clearly, V ⊆ X is open. Also note that

V =
∏
α∈J

Vα

and hence x ∈ V ⊆ Vα ⊆ V , as required. Finally, since Xα is Hausdorff for all α ∈ J ,
X is also Hausdorff, which means that singletons in X are closed. This shows that X
is regular, completing the proof. ■

Example 1.39. Consider the space RK , where the basic open sets were of the form
(a, b) and (a, b)−K where

K =

{
1

n
| n ∈ N

}
We claim that RK is Hausdorff but not regular. It is clear that RK is Hausdorff,
because R is Hausdorff and RK is finer than R.

Next, it is easy to see that K is closed in RK (try to prove this if you don’t see
this). We show that 0 and K can’t be separated by disjoint open sets. Suppose
there are disjoint open sets U and V such that 0 ∈ U and K ⊆ V . Choose a basic
open neighborhood of 0 such that W ⊆ U . Then clearly, W = (a, b) − K for some
a, b ∈ R. Choose n � 0 such that 1

n
∈ (a, b), and hence 1

n
∈ V . Now, choose a basic

neighborhood (c, d) of 1
n

such that (c, d) ⊆ V . Finally, choose z such that z < 1
n

and
z > max{c, 1

n+1
}. Then, z ∈ U ∩ V , and this is a contradiction.

Example 1.40. In this exercise, we show that Rl is normal. Let A,B be disjoint
closed sets. For each a ∈ A, choose a basic open set [a, xa) not intersecting B (possible
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because Bc is open). Similarly, we choose some [b, xb) for all b ∈ B such that these
basic open sets do not intersect A. Let

U =
∪
a∈A

[a, xa) , V =
∪
b∈B

[b, xb)

Clearly A ⊆ U , B ⊆ V and both U, V are open. We show that U and V are disjoint.
If they are not disjoint, then there are a ∈ A and b ∈ B such that [a, xa)∩ [b, xb) 6= φ.
Let y ∈ [a, xa) ∩ [b, xb). Clearly, y 6= a and y 6= b. So, a < y < xa and b < y < xb.
Without loss of generality suppose a < b. Then, we see that a < b < xa, i.e b ∈ [a, xa),
which is a contradiction.

Example 1.41. We have seen in the above example that Rl is normal, and hence it is
regular. By Proposition 1.37, it follows that R2

l is also regular. We claim that R2
l is

not normal, and this will give us an example of the fact that product of normal spaces
need not be normal.

Let
L := {(x,−x) | x ∈ Rl}

Observe that L ⊆ R2
l is a discrete set, i.e every point in L is open in L, and that L is

a closed subset of R2
l . For the sake of contradiction, assume that R2

l is normal. Now,
if A ⊆ L, then clearly A is closed in L (since L is a discrete set). Hence, A and L−A
are both closed in L, and since L is closed in R2

l , it follows that A and L−A are closed
in R2

l . So by normality, there exist disjoint open sets UA and VA such that A ⊆ UA

and L− A ⊆ VA.
Now, let D := Q2 ⊆ R2

l . So, D is dense in R2
l . Define a map θ : P(L) → P(D) as

follows: for A ⊆ L, we put

θ(A) =


φ ,A = φ

D ,A = L

D ∩ UA , A 6= φ,A 6= L

We claim that θ is injective, which will be the required contradiction (since L is
uncountable).

To prove this, suppose A ⊆ L such that A 6= φ and A 6= L. Then θ(A) = D ∩ UA is
non-empty (because D is dense in R2

l ) and θ(A) 6= D because D ∩ VA 6= φ. Therefore
it remains to check that if A,B are proper non-empty subsets of L with A 6= B, then
θ(A) 6= θ(B). Without loss of generality, let x ∈ A ⊆ UA such that x /∈ B. Then
x ∈ L− B ⊆ VB. Hence x ∈ UA ∩ VB and so UA ∩ VB is a non-empty, open subset of
R2

l . Hence D ∩ UA ∩ VB 6= φ. But then D ∩ UA 6= D ∩ UB: y ∈ D ∩ UA ∩ VB implies
that y ∈ D ∩ UA and y /∈ D ∩ UB.

Hence θ : P(L) → P(D) is injective, and clearly this is a contradiction. So, R2
l is

not normal.

Theorem 1.38. The following are true.
(1) A regular space with a countable basis is normal.
(2) A metrizable space is normal.
(3) A compact Hausdorff space is normal.
(4) A well-ordered set (in order topology) is normal. Infact, any order topology is

normal.

Proof. We will prove each of these statemenets one by one.



TOPOLOGY 29

(1) Let us prove (1) first. Let X be a regular space with a countable basis B. Let
A,B be disjoint closed sets in X. For x ∈ A, there exists a neighborhood V of
x such that V ∩B = φ (true because B is closed). Now, by Proposition 1.36
part (1), there is an open neighborhood U of x such that x ∈ U ⊆ U ⊆ V . So,
there exists Un ∈ B such that x ∈ Un ⊆ U . In other words, we can cover A by
{Un}n≥1 such that

Un ∩B = φ ∀n ∈ N
Similarly, we cover B by {Vn}n≥1 such that Vn ∩ A = φ for all n ∈ N. It may
happen that (∪

n

Un

)
∩

(∪
n

Vn

)
6= φ

For each n put

U ′
n := Un −

n∪
i=1

Vi

V ′
n := Vn −

n∪
i=1

Ui

It is clear that each U ′
n and V ′

n is an open set. We claim that
∪

n U
′
n and

∪
n V

′
n

do the job for us, i.e they are disjoint open sets covering A and B respectively.
Now, observe that

x ∈ A =⇒ x ∈ Un for some n, but x /∈ Vi for all i
=⇒ x ∈ U ′

n

and hence A ⊆
∪

n U
′
n. Similarly, B ⊆

∪
n V

′
n. So, these sets cover A and B

respectively.
Next, suppose x ∈ (

∪
n U

′
n) ∩ (

∪
n V

′
n). Then x ∈ U ′

j ∩ V ′
k for some j, k.

Suppose j ≤ k. Then,
x ∈ U ′

j =⇒ x ∈ Uj

x ∈ V ′
k =⇒ x /∈ Uj

and this is a contradiction. This completes the proof of (1).
(2) Next, let us complete the proof of (2). Let X be a metrizable space with

metric d. Let A,B be disjoint closed sets in X. For each a ∈ A, choose εa > 0
such that B(a, εa) ∩ B = φ. Similarly, for all b ∈ B, choose εb > 0 such that
B(b, εb) ∩ A = φ. Let

U :=
∪
a∈A

B(a, εa/2) , V :=
∪
b∈B

B(b, εb/2)

Then we see that A ⊆ U and B ⊆ V , and that U, V ⊆ X are both open. Next,
we show that U, V are disjoint. Observe that
x ∈ U ∩ V =⇒ x ∈ B(a, εa/2) ∩B(b, εb/2) for some a ∈ A, b ∈ B

=⇒ d(a, b) ≤ d(a, x) + d(b, x) <
εa + εb

2

Without loss of generality, say εa ≤ εb. Then d(a, b) < εb. But then a ∈ B(b, εb),
which is not possible.
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(3) Next, we will prove (3). So, let X be a compact Hausdorff space. First, we
will show that X is regular. Let x ∈ X be a point and let A ⊆ X be a closed
set such that x /∈ A. Since X is compact and A is closed in X, we see that A
is also compact. Now, let y ∈ A. So x 6= y, and hence there are disjoint open
sets Uy and Vy such that x ∈ Uy and y ∈ Vy. The collection {Vy}y∈A is an open
cover of A, and hence there is a finite subcover, say

A ⊆ Vy1 ∪ ... ∪ Vyn
Now, consider the sets Uy1 ∩ ...∩Uyn and Vy1 ∪ ...∪ Vyn . Clearly these two sets
are disjoint open sets, and x ∈ Uy1 ∩ ...∩Uyn . So, it follows that X is a regular
space.

Now, we come to the main proof. Let A,B be disjoint closed sets in X. For
a ∈ A, let Ua, Va be disjoint open sets such that a ∈ Ua and B ⊆ Va (we get
this using regularity). Now, A is compact, being a closed subset of the compact
set X. So, A ⊆ Ua1 ∪ ... ∪ Uan for some a1, ..., an ∈ A. Now, put

U := Ua1 ∪ ... ∪ Uan

V := Va1 ∩ ... ∩ Van
So, U, V separate A,B, and hence X is normal.

(4) Skip this proof.
■

Example 1.42. If J is uncountable, then RJ is not normal (see Munkres for a proof).
This shows that product of normal spaces need not be normal. But, we will see that
[0, 1]J is compact (Tychonoff Theorem). So, [0, 1]J is normal, but one of it’s subspaces
is not.
1.16. Urysohn’s Lemma. In this section, we will see a very useful separation result.
Theorem 1.39 (Urysohn’s Lemma). Let X be a normal space, and let A,B be
disjoint closed subsets of X. Let a < b ∈ R. Then there exists a continuous function
f : X → [a, b] such that

f(A) = {a} , f(B) = {b}

Remark 1.39.1. This is also called separating A,B by a continuous function.
Proof. Without loss of generality, we may assume that a = 0 and b = 1. We will prove
the theorem in several steps.

Step 1: We will construct open sets in X indexed by Q. Let P = [0, 1]∩Q. The goal
is to define open sets Up ⊆ X for all p ∈ P such that

p < q =⇒ Up ⊆ Uq(∗)
First, arrange the elements of P in an infinite sequence starting with 1, 0, i.e the first
two elements of the sequence must be 1 and 0 respectively. Let

U1 = X −B

We see that A ⊆ U1. Since X is normal, there is an open set U0 such that A ⊆ U0 ⊆
U0 ⊆ U1. For the rationals 0, 1, statement (∗) is clearly true.

Suppose we have constructed the first n open sets, where n ≥ 2, such that these
open sets satisfy the condition in (∗). Let r be the next element of P . Then r 6= 0, 1.
Let Pn+1 be the first n + 1 elements of P . Order the elements of Pn+1 by the usual
order in Q. In this order, let p be the immediate predecessor of r, and let q be the
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immediate successor of r. We have already defined Up, Uq such that Up ⊆ Uq. By
normality, there is an open set Ur such that

Up ⊆ Ur ⊆ Ur ⊆ Uq

Now, let s ∈ Pn+1.
(1) Suppose s < r. We need to check that Us ⊆ Ur. We know that s ≤ p and

hence Us ⊆ Up ⊆ Ur.
(2) If s > r, then we know that s ≥ q. So Uq ⊆ Us and hence Ur ⊆ Uq ⊆ Us.

Step 2: Define
Up := φ ∀p ∈ Q, p < 0

Up := X ∀p ∈ Q, p > 1

So we have {Up ⊆ X open | p ∈ Q} satisfying (∗).

Step 3: For x ∈ X, let
Q(x) := {p ∈ Q | x ∈ Up} ⊆ [0,∞)

So each Q(x) is bounded below, and clearly each Q(x) 6= φ. Define
f(x) := inf Q(x)

Clearly, f(x) ∈ [0, 1] for all x ∈ X.

Step 4: We claim that f is the function we are looking for. Observe that
x ∈ A =⇒ 0 ∈ Q(x)

=⇒ f(x) = inf Q(x) = 0

=⇒ f(A) = {0}

Similarly, we have that
x ∈ B =⇒ x /∈ Up ∀p ≤ 1 (since U1 = X −B)

Also, we see that x ∈ B =⇒ x ∈ Up for all p > 1. So this means that
f(x) = inf Q(x) = 1

=⇒ f(B) = {1}

Finally, we show that f is continuous, and that will complete the proof of the claim.
We will show the following: if r ∈ [0, 1] ∩Q, then

(1) x ∈ Ur =⇒ f(x) ≤ r.
(2) x /∈ Ur =⇒ f(x) ≥ r.

This is easy to prove: if x ∈ Ur then x ∈ Us for all s ≥ r and hence f(x) ≤ r. If
x /∈ Ur, then x /∈ Us for all s < r and hence f(x) ≥ r.

Now, let x0 ∈ X. Let (c, d) ∈ R be an open interval containing f(x0). We will find
a neighborhood of U of x0 such that f(U) ⊆ (c, d) (which will show that f−1(c, d)
is open, and hence that f is continuous). Choose rational numbers p, q such that
c < p < f(x0) < q < d. We claim that U := Uq \ Up works. So first, we show that
x0 ∈ U . Observe that f(x0) < q, and hence by point (2) above, it must be true that
x ∈ Uq. Similarly, we know that f(x0) > p, and hence by point (1) above, it must be
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true that x /∈ Up. This implies that x0 ∈ Uq \ Up = U , and hence U is a neighborhood
of x0. Next, we show that f(U) ⊆ (c, d). Suppose x ∈ U . Then the following hold.

(1) x ∈ Uq, and hence x ∈ Uq, which means f(x) ≤ q by point number (1) above.
(2) x /∈ Up, which implies that x /∈ Up and hence f(x) ≥ p by point (2) above.

Hence p ≤ f(x) ≤ q, which implies that f(x) ∈ (c, d). This completes the proof. ■
Definition 1.25. Let X be a topological space in which every singleton set is closed.
X is said to be completely regular if given a point x ∈ X and a closed set A ⊆ X such
that x /∈ A, there is a continuous function f : X → [0, 1] such that f(x0) = 1 and
f(A) = {0}.

Definition 1.26. A space X is said to be completely normal if every subspace of X
is normal.

We have
T5(completely normal) ⇐⇒ T4(normal) =⇒ T3(regular) =⇒ T2(Hausdorff) =⇒ T1

The fact that T5 =⇒ T4 is easy. On the other hand, the fact that T4 =⇒ T5 is hard
to show, but we have shown this in Urysohn’s Lemma 1.39.

Exercise 1.10. Find counterexamples to prove that T1 ⇏ T2, T2 ⇏ T3, T3 ⇏ T4 and
T3.5 ⇏ T4. Is T3 =⇒ T3.5 true?

Solution. To be completed. Counterexample for T3 ⇏ T4 is R2
l .

Exercise 1.11. Is it true that Hausdorffness implies complete Hausdorfness?

Solution. To be completed.

1.17. Urysohn Metrization Theorem. Here is another important result.

Theorem 1.40 (Urysohn Metrization Theorem). Every regular space with a
countable basis is metrizable.

Remark 1.40.1. Regularity is a necessary condition for metrizability (because ev-
ery metrizable space is normal by Theorem 1.38, and hence regular), but having a
countable basis is not.

Proof. Let X be a regular space with a countable basis. We will prove that X is
a subspace of a metric space. In fact, we will show that X is homeomorphic to a
subspace of Rω. We will be using the fact that Rω is metrizable. A proof of this can
be found in Munkres.

Step 1: There exists a countable collection of continuous functions fn : X → [0, 1]
such that given any x0 ∈ X and any neighborhood U of x0, there exists n such that
fn(x0) > 0 and fn(X \ U) = {0}.

Let us prove Step 1. By Theorem 1.38 part (1), we know that X is a normal
space. Let {Bn} be a countable basis of X. For each pair n,m such that Bn ⊆ Bm,
apply Uryosohn’s Lemma 1.39 to Bn and X −Bm to obtain a continuous function
gn,m : X → [0, 1] such that gn,m(Bn) = 1 and gn,m(X − Bm) = 0. We claim that
{gn,m} is the desired collection. Note that this collection is countable. Let x0 ∈ X
and let U ⊆ X be a neighborhood of x0. Since {Bn} is a basis, there is some Bm

such that x0 ∈ Bm ⊆ U . Now, regularity implies that there is some Bn such that
x0 ∈ Bn ⊆ Bn ⊆ Bm ⊆ U . So, gn,m is defined for this pair n,m. Now gn,m(x0) = 1
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and gn,m(X − Bm) = {0} which implies that gn,m(X − U) = {0}. This completes the
proof of Step 1.

Step 2: Consider the function F : X → Rω given by x 7→ (f1(x), f2(x), · · · ). Then F
is an embedding of X into Rω.

To prove Step 2, we make the following observations.
(1) F is continuous, since each fn is.
(2) F is injective: let x 6= y ∈ X. By regularity, there is an open set U ⊆ X such

that x ∈ U and y /∈ U . By Step 1, there is some n ∈ N such that fn(x) = 1
and fn(y) = 0. So F (x) 6= F (y).

(3) F : X → F (X) is an open map: Let Z := F (X) and let U ⊆ X be open. We
will prove that F (U) is open in Rω. Let z0 ∈ F (U). Then there is some x0 ∈ U
such that F (x0) = z0.

Choose N such that fN(x0) > 0 and fN(X −U) = {0}, which is possible by
Step 1. Let

V = R× R× · · · × (0,∞)× R× · · ·
where the factor (0,∞) occurs at the Nth coordinate. Clearly, V is an open
set in Rω. Let W = V ∩ Z, and hence W is open in Z. We claim that
z0 ∈ W ⊆ F (U), and this will prove that F (U) is open. First, let us show that
z0 ∈ W . Let πN : Rω → R be the projection map. Then

πN(z0) = πN(F (x0)) = fN(x0) > 0

and this implies that z0 ∈ V , and hence z0 ∈ W . Now, we show that W ⊆
F (U). Observe that

z ∈ W =⇒ z = F (x) for some x ∈ X and πN(z) > 0

=⇒ πN(z) = fN(x) > 0

=⇒ x ∈ U (because fN(X − U) = {0})
=⇒ z = F (x) ∈ F (U)

=⇒ W ⊆ F (U)

Hence, F : X → F (X) is an open map.
The three points above show that F : X → Rω is an embedding of X into Rω, and
hence X is metrizable. This completes the proof. ■
Remark 1.40.2. In the above proof, we constructed an embedding F : X → Rω.
Infact, the same proof as above gives the following general result.

Theorem 1.41. Let X be a space in which singletons are closed. Suppose that {fα}α∈J
is an indexed family of continuous functions fα : X → R satisfying the following: given
x0 ∈ X and a neighborhood U ⊆ X of x0, there is some α ∈ J such that fα(x0) > 0
and fα(X − U) = {0}. Then, the function F : X → RJ defined by

F (x) = (fα(x))α∈J

is an embedding. If each fα maps X into [0, 1], then F embeds X in [0, 1]J .

Proof. The same proof as in Urysohn Metrization Theorem 1.40 works. ■
Theorem 1.42. A space X is completely regular if and only if it is homeomorphic to
a subspace of [0, 1]J for some J .
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Proof. To be completed. For the forward direction, use Theorem 1.41. For the
backward direction, try to prove it directly. ■

1.18. Tietze Extension Theorem. This is one of the more important theorems
about extensions of continuous functions.

Theorem 1.43 (Tietze Extension Theorem). Let X be a normal space and let
A ⊆ X be closed. Let a, b ∈ R.

(1) Any continuous map A→ [a, b] can be extended to a continuous map X → [a, b].
(2) Any continuous map A→ R can be extended to a continuous map X → R.

Proof. We will prove this theorem in steps.

Step 1: Let f : A→ [−r, r] be a continuous function, where r > 0 is any real number.
Then there exists a continuous function g : X → R such that

(1) |g(x)| ≤ r/3 for all x ∈ X and
(2) |g(a)− f(a)| ≤ 2r/3 for all a ∈ A.

Let’s prove Step 1. Let I1 = [−r,−r/3], I2 = [−r/3, r/3] and I3 = [r/3, r]. Let
B = f−1(I1) and C = f−1(I3). Since f is continuous, B,C are disjoint closed subsets
of A, and hence of X (because A is closed). Now we apply Urysohn’s Lemma 1.39
to the sets B,C: there exists a continuous function g : X → [−r/3, r/3] such that
g(B) = {−r/3} and g(C) = {r/3}. We claim that g satisfies the required properties
(1) and (2). It is clear that g satisfies (1). Next, let a ∈ A. There are three possibilities:

• The first possibility is a ∈ B. In this case, we see that g(a) = −r/3 and
f(a) ∈ I1, which implies that

|g(a)− f(a)| ≤ 2/3r

• The second possibility is a ∈ C. The proof here is the same as that in the case
a ∈ B.

• The third and final possibility is a /∈ B, a /∈ C. In this case, we see that
f(a) ∈ I2 and g(a) ∈ I2. Again, we have

|g(a)− f(a)| ≤ 2/3r

and hence we are done.
This completes the proof of Step 1.

Next, let us prove part (1) of the theorem. Without loss of generality suppose
a = −1 and b = 1. We apply Step 1 with r = 1 to obtain a continuous function
g1 : X → [−1/3, 1/3] which satisfies properties (1) and (2) of Step 1. Clearly, we see
that f − g1 : A → [−2/3, 2/3] is a continuous function. Again, we apply Step 1 to
f − g1 to get a continuous function g2 : X → [−2/9, 2/9] which satisfies properties (1)
and (2) of Step 1, i.e

|g2(x)| ≤
2

9
∀x ∈ X and

|f(a)− g1(a)− g2(a)| ≤
(
2

3

)2

∀a ∈ A
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Continuing this way, we can obtain functions gn : X → R such that

|gn(x)| ≤
1

3

(
2

3

)n−1

∀x ∈ X

|f(a)− g1(a)− ...− gn(a)| ≤
(
2

3

)n

∀a ∈ A

Now define the function

g(x) =
∞∑
n=1

gn(x) ∀x ∈ X

It is easy to see that the series on the RHS is convergent, as it is dominated by a
geometric sum. Infact, by the Weierstrass M -test, we see that this series converges
uniformly, and hence g is a continuous function. Now, we claim that g : X → [−1, 1].
This is true because

1

3

∑
n≥0

(
2

3

)n

= 1

and that |g| is dominated by this series. So, g : X → [−1, 1] is a continuous function.
Finally, we show that g is an extension of f . For any a ∈ A let

sn(a) :=
n∑

i=1

gn(x)

Then, for a ∈ A we know that |f(a)−sn(a)| ≤ (2/3)n for all n and hence sn(a) → f(a)
as n→ ∞, which implies that

g(a) = f(a) ∀a ∈ A

This completes the proof of part (1) of the theorem.
Finally, we prove part (2) of the theorem. Given a continuous function A → R, by

composing with a homeomorphism R ∼= (−1, 1) we get a function f : A → (−1, 1) ⊆
[−1, 1]. By part (1) of the theorem, there is a continuous function g : X → [−1, 1]
such that g(a) = f(a) for all a ∈ A. Let D := g−1({−1}) ∪ g−1({1}) ⊆ X. If D = φ,
then g(X) ⊆ (−1, 1) and we are done, i.e we can get an extension of our original
function by again composing with a homeomorphism. So, suppose D 6= φ. D is closed
in X and D ∩ A = φ. So, we can apply Urysohn’s Lemma 1.39 to A,D: we get a
continuous function φ : X → [0, 1] such that φ(D) = {0} and φ(A) = {1}. Now define
h : X → [−1, 1] by h(x) = φ(x)g(x). We show the following two things.

• h(X) ⊆ (−1, 1): clearly, if x ∈ D then h(x) = φ(x)g(x) = 0. If x /∈ D, then
|g(x)| < 1 and hence |h(x)| = |φ(x)g(x)| < 1 which implies that h(x) ∈ (−1, 1).

• h extends the function f : if a ∈ A, then h(a) = φ(a)g(a) = 1 · f(a) = f(a).
So, h : X → (−1, 1) is an extension of f , and again by composing with a homeo-
morphism, we can obtain an extension of our oringinal function. This completes the
proof. ■
Exercise 1.12. Find a space X and a closed subset A ⊆ X for which the extension
theorem does not hold.

Solution. To be completed.

Exercise 1.13. Show that the Tietze Extension Theorem 1.43 implies Urysohn’s
Lemma 1.39.
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Exercise 1.14. Let X = R, A = (0, 1) and B = (1, 2). Show that A,B can’t be
separated by a continuous function. Show that the Tietze Extension Theorem
1.43 fails for A ⊆ X.
Exercise 1.15. Let X be a regular, second countable space. Let U ⊆ X be open.

(1) Show that U is a countable union of closed subsets of X.
(2) Show that there exists a continuous function f : X → [0, 1] such that f(x) > 0

for all x ∈ U and f(X \ U) = {0}.

1.19. Manifolds. This will be a short discussion on manifolds.
Definition 1.27. Let m > 0 be an integer. An m-manifold is a Hausdorff, second
countable space X such that every point x ∈ X has a neighborhood which is homeo-
morphic to an open subset of Rm.
Example 1.43. The sphere Sn ⊆ Rn+1 is an n-manifold, though this is not completely
trivial. The case n = 1 is not hard to see.
Theorem 1.44. Any connected, compact 1-manifold is homeomorphic to S1. Any
connected, non-compact 1-manifold is homeomorphic to R.
Proof. We won’t prove these here. ■
Definition 1.28. If φ : X → R is a function on a topological space X, the support of
φ, represented by supp(φ), is defined as

supp(φ) = φ−1(R− {0})
So if x /∈ supp(φ), then there is some neighborhood U of x such that φ(U) = {0}.
Definition 1.29. Let {U1, ..., Un} be an indexed open cover of a space X. A partition
of unity dominated by {Ui} is an indexed family of continuous functions

φi : X → [0, 1], 1 ≤ i ≤ n

such that
(1) supp(φi) ⊆ Ui.
(2)

∑n
i=1 φi(x) = 1 for all x ∈ X.

Theorem 1.45. Let X be normal, and let {U1, ..., Un} be an open cover of X. Then
there exists a partition of unity dominated by {Ui}.
Proof. We will prove this theorem in a couple of steps.

Step 1: There is an open cover {V1, ..., Vn} of X such that Vi ⊆ Ui for each 1 ≤ i ≤ n.

To show this, let A := X−(U1, ..., Un); A ⊆ X is closed, and since {Ui} cover X we see
that A ⊆ U1. Since X is normal, there is an open set V1 such that A ⊆ V1 ⊆ V1 ⊆ U1.
Since A ⊆ V1 and {A,U2, ..., Un} cover X, it follows that {V1, U2, ..., Un} cover X.
Now, we can repeat this procedure to obtain the sets Vi for each 1 ≤ i ≤ n, and this
completes the proof of Step 1.

Step 2: Here we will prove the theorem. So given {U1, ..., Un}, let {V1, ..., Vn} be as
constructed in Step 1. Again by Step 1, choose an open cover {W1, ...,Wn} of X such
that Wi ⊆ Vi for 1 ≤ i ≤ n. Now, applying Urysohn’s Lemma 1.39 to the closed
sets Wi and X − Vi, we get continuous functions ψi : X → [0, 1] for each 1 ≤ i ≤ n
such that

ψi(Wi) = {1} and ψi(X − Vi) = {0}
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This means that supp(ψi) ⊆ Vi ⊆ Ui.
Now, for every x ∈ X, x ∈ Wi for some i, and hence ψi(x) = 1 for some i. This

means that
n∑

i=1

ψi(x) > 0

for all x ∈ X. For each 1 ≤ i ≤ n, define

ϕi(x) =
ψi(x)∑n
j=1 ψj(x)

∀x ∈ X

We see that each ϕi is a continuous function X → [0, 1], and
(1) supp(ϕi) = supp(ψi) ⊆ Ui for each 1 ≤ i ≤ n.
(2)

∑
i ϕi(x) = 1 for all x ∈ X.

■
Theorem 1.46. If X is a compact m-manifold, then X can be embedded in RN for
some N > 0.
Proof. Let {U1, ..., Un} be an open cover of X such that for each i, we have a home-
omorphism gi : Ui → Rm (such a finite cover exists because X is assumed to be
compact). By Theorem 1.38, we know that X is a normal space, since it is Hausdorff
and compact. By Theorem 1.45, there is a partition of unity {φ1, ..., φn} dominated
by the cover {U1, ..., Un}. Let Ai = supp(φi) for each i. Define maps hi : X → Rm by

h(x) =

{
φi(x)gi(x) x ∈ Ui

0 x ∈ X − Ai

So, each hi is a continuous function. Let F : X → R×· · ·×R×Rm×· · ·×Rm = Rn+mn

be the map defined by
x 7→ (φ1(x), ..., φn(x), h1(x), ...., hn(x))

Let N = n+mn. We claim that F is an embedding. Clearly, F is continuous, because
each of its component functions are continuous. It suffices to show that F is injective,
because X is compact and RN is Hausdorff (which will imply that the inverse is also
continuous). Let F (x) = F (y) for some x, y ∈ X. This means that

φi(x) = φi(y) , hi(x) = hi(y)

for each 1 ≤ i ≤ n. Now, there is some i such that φi(x) > 0. Hence, φi(y) > 0.
Because hi(x) = hi(y), this implies that gi(x) = gi(y), which implies that x = y,
because gi is a homeomorphism. ■
Remark 1.46.1. The above theorem actually holds for any m-manifold.
1.20. Tychonoff Theorem. Now we will prove one of the most important and diffi-
cult theorems in topology.
Lemma 1.47. Let X be a set, and let A be a collection of subsets of X satisfying
the finite intersection property. Then there is a collection D of subsets of X such that
A ⊆ D , D has the finite intersection property and no collection of subsets of X that
properly contains D has the finite intersection property.
Proof. We will use Zorn’s Lemma to prove this. We are given a collection A of subsets
of X having the finite intersection property. Let A be the superset consisting of all
collections B of subsets of X such that
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(1) A ⊆ B and
(2) B has the finite intersection property.

Note that A 6= φ. The order on the set A is given by set inclusion. Our goal is to
show that A has a maximal element for this order, and to use Zorn’s lemma, we will
have to show that every chain in A has an upper bound. So let B be any chain in A,
and let

C :=
∪

B∈B

B

Clearly, C is a collection of subsets of X. We claim that C is an upper bound for B.
• A ⊆ C because each B ⊇ A .
• C has the finite intersection property: Let C1, ..., Cn ∈ C . Then Ci ∈ Bi for

each i, where Bi ∈ B. Since B is a chain, {B1, ...,Bn} has a largest element,
say B1. So, Ci ∈ B1 for each i. Since B1 has the finite intersection property,
we see that

C1 ∩ ... ∩ Cn 6= φ

as required. Hence C ∈ A. Clearly, C is an upper bound for B. So by Zorn’s
lemma, A has a maximal element, and this completes the proof of the lemma.

■
Lemma 1.48. Let X be a set, and let D be a collection of subsets of X that is maximal
with respect to the finite intersection property. Then the following are true.

(1) Any finite intersection of elements of D is an element of D .
(2) If A is a subset of X such that A ∩ D 6= φ for every D ∈ D , then A is an

element of D .
Proof. First, let us prove part (1). Let D1, ..., Dn ∈ D and let B := D1 ∩ ... ∩ Dn.
Consider E = D ∪ {B}. If E = D , then we are done. So, suppose E 6= D , and
hence E doesn’t have the finite intersection property. But this is a contradiction: Let
E1, ..., Em ∈ E . Two cases are possible.

(1) E1, ..., Em ∈ D : in this case, we have E1 ∩ ... ∩ En 6= φ, because D has the
finite intersection property.

(2) In the second case, suppose E1 = B without loss of generality. Then
E1 ∩ ... ∩ En = D1 ∩ ... ∩Dn ∩ E2 ∩ ... ∩ Em 6= φ

which is true because D has the finite intersection property.
Now, let us prove (2). Let E = D ∪ {A}. Then we claim that E has the finite

intersection property. To show this, if D1, ..., Dn ∈ D then
D1 ∩ ... ∩Dn ∩ A 6= φ

by hypothesis. Since D is maximal with respect to the finite intersection property, it
follows that E = D , and hence A ∈ D . This completes the proof of the lemma. ■
Theorem 1.49 (Tychonoff Theorem). An arbitrary product of compact spaces is
compact.
Proof. Let Xα be a compact space for every α ∈ J , where J is some indexing set. Let

X :=
∏
α∈J

Xα

To prove that X is compact, we will use the characterisation of compactness using
the finite intersection property, i.e we will use the result of Theorem 1.26. We will
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show the following: if A is any collection of subsets of X having the finite intersection
property, then ∩

A∈A

A 6= φ(?)

and this will show that X is compact, and that will complete the proof.
So, let A be any such collection. By Lemma 1.47, there is a collection D of subsets

of X such that A ⊆ D , D has the finite intersection property and D is maximal with
respect to the finite intersection property. Now, we will show that∩

D∈D

D 6= φ

and that will automatically show (?).
For α ∈ J , let πα : X → Xα be the projection map. Because D has the finite

intersection property, it follows that {πα(D) | D ∈ D} is a collection of subsets of Xα

satisfying the finite intersection property. So, it follows that {πα(D) | D ∈ D} is a
collection of closed subsets of Xα having the finite intersection property. Since Xα is
compact, there is some xα ∈ Xα such that xα ∈ πα(D) for all D ∈ D . We claim that

x = (xα)α∈J ∈ D ∀D ∈ D

Now, fix β ∈ J . Let Uβ ∈ Xβ be any open set. Then, π−1
β (Uβ) ⊆ X is an open set.

Suppose x ∈ π−1
β (Uβ), which implies that xβ ∈ Uβ. Since xβ ∈ πβ(D) for all D ∈ D ,

it follows that πβ(D) ∩ Uβ 6= φ. This means that π−1
β (Uβ) ∩ D 6= φ. We now apply

Lemma 1.48 part (2) to conclude that π−1
β (Uβ) ∈ D .

Now, observe that every basic open set in X containing x is a finite collection of open
sets of the form π−1

β1
(Uβ1), ...., π

−1
βn
(Uβn) (such elements are called subbasis elements).

So, by part (1) of Lemma 1.48, it follows that if U ⊆ X is a basic open set containing
x then U ∈ D .

Finally, if D ∈ D , U ⊆ X is a basic open set such that x ∈ U , then D ∩ U 6= φ
because D,U ∈ D and D has the finite intersection property. So x ∈ D for all D ∈ D ,
and this completes our proof. ■
1.21. Compactification. Let X be a topological space. A compactification of X is a
compact space Y such that X is homeomorphic to a subspace of X0 of Y and X0 = Y .
If Y is a compactification of X, then we think of X as a subspace of Y .

Definition 1.30. Two compactifications Y1, Y2 of a space X are equivalent if there
is a homeomorphism h : Y1 → Y2 such that h(x) = x for all x ∈ X, i.e there is a
homeomorphism between Y1, Y2 that fixes X.

Example 1.44. Let X = (0, 1) ⊆ R. Then Y1 = [0, 1] is a compactification of X, and
this is easy to see.

Let Y2 = S1 ⊆ R2. We show that Y2 is a compactification of X. The map f :
(0, 1) → S1 given by

f(x) = (cos 2πx, sin 2πx)

is a witness. The image of (0, 1) under this map is S1 \ {(1, 0)}, and hence f((0, 1)) =
S1.

Example 1.45. Let g : (0, 1) → R2 be the map given by g(x) =
(
x, sin 1

x

)
. First, we

show that g is a homeomorphism onto its image. Clearly, g is a continuous map. Also,
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it is one-one because its first component is one-one. Finally, we show that g is a closed
map. Let C be any closed subset of (0, 1), and let p be a limit point of g(C). We want
to show that p ∈ g(C). So, there is a sequence xn of points in g(C) such that xn → p as
n → ∞. Now, write xn = (an, bn) ∈ g(C). It is then easily seen that g(an) = (an, bn),
and each an ∈ C. Let π1 : R2 → R and π2 : R2 → R be the projections. We see
that an → π1(p) as n → ∞. Since C is a closed set, it follows that π1(p) ∈ C. Now,
consider the point g(π1(p)) ∈ g(C), and we will show that p = g(π1(p)), which will
complete our proof. But this is immediate from the continuity of g. So, it follows that
g is a homeomorphism onto its image.

Now, let Y3 = g((0, 1)). We show that Y3 is a compactification of (0, 1). To be
completed.
Remark 1.49.1. Try to prove that any two of the above compactifications are equiv-
alent. Try to see if they are even homeomorphic to each other.
Definition 1.31. A topological space X is locally compact at x ∈ X if there is some
compact subset C of X which contains a neighborhood of x. We say that X is locally
compact if it is locally compact at every point of X.
Example 1.46. Any compact space is trivially locally compact. It is also easy to
see that R is locally compact. More generally, Rn is locally compact. Q is not locally
compact (this is not a trivial fact). Any ordered topological space with the least upper
bound property is locally compact, because of Theorem 1.27.
Theorem 1.50. Let X be any space. Then X is a locally compact Hausdorff space if
and only if there exists a space Y such that the following hold.

(1) X is a subspace of Y .
(2) Y −X is a singleton.
(3) Y is a compact Hausdorff space.

If Y and Y ′ are two spaces satisfying the above conditions, then there is a homeomor-
phism h : Y → Y ′ such that h(x) = x for all x ∈ X, i.e the two compactifications Y, Y ′

of X are equivalent.
Proof. We will prove this theorem in steps. First the backward direction. So let Y, Y ′

be two spaces satisfying conditions (1)-(3) of the theorem.

Step 1: X is open in Y and Y ′.

Because Y is Hausdorff, Y −X being a singleton is closed in Y . Same reasoning holds
for Y ′. This completes the proof.

Step 2: Define the map h : Y → Y ′ as follows:
h(x) = x ∀x ∈ X

h(p) = q where Y −X = {p}, Y ′ −X = {q}
Now all we need to do is showing that h is a homeomorphism. Clearly, h is a bijective
function. So, we only need to show that h is continuous and it is an open map. By
symmetry, it suffices to show that for all open sets U ⊆ Y , h(U) is open in Y ′. Let
U ⊆ Y be an open set. If p /∈ U , then h(U) = U . Now,

U ⊆ Y is open =⇒ U = U ∩X ⊆ X is open =⇒ U ⊆ Y ′ is open
and hence h(U) is open in Y ′ in this case (note that we are using Step 1 here).
Suppose now that p ∈ U . Let C := Y − U , which means that C is closed in Y . Also
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note that C ⊆ X, and hence C ⊆ Y, Y ′. Since Y is compact, C being closed is also
compact. Because Y ′ is Hausdorff and C is compact, it follows that C is closed in Y ′.
So

h(U) = Y ′ − C

is open in Y ′. This shows that h is a homeomorphism and completes this part.

Step 3: Finally, let us show that X is a locally compact Hausdorff space. X is clearly
Hausdorff, since Y is Hausdorff. Now, we prove local compactness. Let x ∈ X, and
let Y −X = {p}. Since Y is Hausdorff, there exist disjoint open sets U and V in Y
such that x ∈ U, p ∈ V . Let C = Y − V . Let C = Y − V . Then C ⊆ Y is closed,
and hence C is compact. Also C ⊆ X. So x ∈ U ⊆ C ⊆ Y , and hence X is locally
compact.

Step 4: Now, we will prove the forward direction of the theorem. Suppose X is locally
compact and Hausdorff. We want to construct a space Y with the given properties.
Define Y = X ∪ {∞}, where ∞ is just a notation for a new point which is not in X.
Define the open sets in Y as follows:

• Any open subset U of X is open in Y .
• All sets of the form Y − C, where C ⊆ X is compact, are open in Y .

We claim that this is a topology on Y . Clearly, φ is open in Y . Also, note that
Y = Y − φ, and hence Y is also open. Now, we will show the closure of open sets
under finite intersections.

• If U1, U2 ⊆ X are open in X, then U1 ∩U2 is open in X, and hence open in Y .
• If C1, C2 are compact subsets of X, then

(Y − C1) ∩ (Y − C2) = Y − (C1 ∪ C2)

and because C1 ∪ C2 is compact, it follows that this set is open in Y .
• Now, suppose U is open in X, and C ⊆ X is compact. Then

U ∩ (Y − C) = U ∩ (X − C)

which is clearly open in X, because X is Hausdorff, which implies that C being
compact is closed in X.

Next, let us show that arbitrary union of open sets is open.
• If {Uα} is a collection of open subsets of X, then

∪
Uα is open in X, and hence

is open in Y .
• Let {Cα} be a collection of compact subsets of X. Then, it is clear that

∩
Cα

is also compact (because X is Hausdorff). So∪
(Y − Cα) = Y −

(∩
Cα

)
is open in Y .

• Finally, let U be an open subset of X, and let C be a compact subset of X.
Then

U ∪ (Y − C) = Y − (C − U)

Now C − U is a compact set (since it is a closed subset of C), and hence this
set is open in Y .

So, Y is indeed a topological space. Let us next show that X is a subspace of Y . To
do this, we need to check that X ↪→ X ∪ {∞} = Y is an embedding.
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• Let U ⊆ X be open. Then U ⊆ Y is clearly open in Y , and hence the inclusion
X ↪→ X ∪ {∞} is an open map.

• Next, let U∩Y be an open set. We want to show that U∩X is open in X (note
that U ∩X is the inverse image of U under the inclusion X ↪→ X ∪{∞}). If U
is such that U ⊆ X, then U is already open in X. Next, suppose U = Y − C
for some compact subset C ⊆ X. Then

U ∩X = (Y − C) ∩X = X − C

is open in X, because C is compact and X is Hausdorff. So this shows that X
is a subspace of Y .

Next, let us show that Y is a compact set. Let O be an open cover of Y . Then one of
the elements of the set O must be of the form Y − C for some compact set C ⊆ X.
Consider the subset O′ of O consisting of sets other than Y − C. Clearly, O′ is an
open cover of C. Since C is compact, there are finitely many open sets U1, ..., Un ∈ O′

such that C ⊆ U1∪ ...∪Un. Hence, {U1, ..., Un, Y −C} is a finite subcover of Y . Hence
Y is compact.

Finally, let us show that Y is Hausdorff. Let x, y ∈ Y be distinct points. If x, y ∈ X,
then we can separate them, since X is Hausdorff. If y = ∞ and x ∈ X, choose a
compact set C ⊆ X containing a neighborhood U of x (U ⊆ X, and this is where we
need local compactness of X). Then, U, Y −C are disjoint open sets containing x and
∞, respectively. This completes the proof. ■

Remark 1.50.1. Let X be a locally compact, Hausdorff space which is not compact.
Then we claim that X is dense in the space Y constructed in the above theorem. So,
it in this, Y is a compactification of X. The reasoning is as follows: observe that

X = Y ⇐⇒ p is a limit point of X
⇐⇒ every neighborhood of p intersects X
⇐⇒ {p} is not a neighborhood of p
⇐⇒ X is not compact

Definition 1.32. Let X be a locally compact Hausdorff space which is not compact.
The space Y constructed in Theorem 1.50 is a compactification of X and is called
the one-point compactification of X.

Example 1.47. S1 is the one point compactification of R. S2 is the one-point com-
pactification of R2 (proof of this to be completed). If we identify R2 with C, then
S2 ∼= C ∪ {∞}. This is called the Riemann Sphere.

Lemma 1.51. Let X be a Hausdorff space. Then X is locally compact if and only if
given x ∈ X and a neighborhood U of x, there is a neighborhood V of x such that V
is compact and V ⊆ U .

Proof. To be completed. ■

Proposition 1.52. Let X be locally compact Hausdorff; let A ⊆ X be open or closed.
Then A is locally compact.

Proof. To be completed. ■

Proposition 1.53. A space X is homeomorphic to an open subspace of a compact
Hausdorff space if and only if X is locally compact Hausdorff.
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Proof. First, suppose X is locally compact Hausdorff. Let Y be the one-point com-
pactification of X (Definition 1.32). Then, X is open in Y , and this proves the
backward direction of the theorem.

Conversely, suppose X is homeomorphic to an open subsapce of a compact Hausdorff
space Y , and without loss of generality suppose X ⊆ Y . Since Y is compact Hausdorff,
Proposition 1.52 implies that X is locally compact Hausdorff. This completes the
proof. ■

1.22. Stone-Čech compactification. The basic question concerning this section will
be the following: given a space X, can we find a compactification Y of X such that
any real valued function f : X → R extends to Y ?

Lemma 1.54. Let X be a space, and let h : X → Z be an embedding of X into
a compact Hausdorff space. Then there is a compactification Y of X which has the
following property: there is an embedding H : Y → Z such that H(x) = h(x) for all
x ∈ X. Moreover, Y is uniquely determined upto equivalence.

Proof. Let X0 = h(X) ⊆ Z, and let Y0 = X0. Then Y0 is a compact Hausdorff space,
and Y0 is a compactification of X0. Clearly, Y0 is also a compactification of X.

Construct a superset Y of X as follows: let A be a set disjoint from X such that
there is a bijection k : A → Y0 −X0. Let Y = X ∪ A. Define a function H : Y → Y0
by:

H(x) = h(x) x ∈ X

H(a) = k(a) a ∈ A

Clearly, H is a bijection. Give a topology on Y by declaring U ⊆ Y to be open if and
only if H(U) ⊆ Y0 is open. Then H is a homeomorphism, and X is a subset of Y .
Since Y0 is compact Hausdorff, it follows that Y is also compact Hausdorff. Clearly,
Y is also a compactification of X.

Let us now show that Y is uniquely determined upto equivalence. To be completed.
■

Theorem 1.55. Let X be a completely regular space. Then there is a compactification
Y of X such that every bounded continuous map f : X → R extends uniquely to a
continuous map of Y into R. Further, any such compactification is Hausdorff.

Proof. Let {fα}α∈J be the collection of all bounded continuous functions X → R.
For each α ∈ J , let Iα := [inffα(x), supfα(x)] ⊆ R. Define h : X →

∏
α∈J Iα = Z as

h(x) = (fα(x))α∈J

Clearly, Z is Hausdorff. Also, by Tychonoff’s Theorem 1.49, Z is compact. We
claim that h is an embedding. Because X is competely regular, {fα} separates points
from closed sets: if x ∈ X and A ⊆ X is a closed set such that x /∈ A, then there
is a continuous function f : X → [0, 1] such that f(x) = 0 and f(A) = {1}. Being
bounded, f ∈ {fα}. By Theorem 1.41, we see that h is an embedding.

By Lemma 1.54, let Y be the compactification of X corresponding to h : X → Z.
We claim that Y is the required compactification. Let f : X → R be a continuous,
bounded map. Then f = fα for some α ∈ J . Consider the following commutative
diagram.
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X Y
∏
Iα = Z Iα

inclusion

h

f=fα

H πα

It is easy to argue why the above diagram commutes. Clearly, we see that H ◦πα is the
desired continuous extension of fα to Y . The uniqueness of the continuous extension
will be proved in the exercise immediately after this theorem. ■
Exercise 1.16. Let X be a space and let A ⊆ X. Let f : A→ Z be a continuous map
where Z is Hausdorff. Then there exists at most one extension of f to a continuous
function g : A→ Z.

Solution. To be completed. Idea: If there are two extensions f, g : A→ Z. Say there
is some a ∈ A such that f(a) 6= g(a). Now use the Hausdorffness of Z to get disjoint
open sets U, V such that f(a) ∈ U and g(a) ∈ V . Then, take the sets f−1(U) and
g−1(V ); both of these sets contain the point a. Since a ∈ A, every open neighborhood
of a will intersect A. Find a contradiction from this.

Theorem 1.56. Let X be a completely regular space, and let Y be a compactification
satisfying the extension property proved in the previous theorem. Let C be any compact
Hausdorff space and let f : X → C be continuous. Then f extends uniquely to a
continuous map g : Y → C.
Proof. Since C is compact Hausdorff, it is normal by Theorem 1.38, and hence by
Urysohn’s Lemma 1.39 C is completely regular. Then, just like we saw in the proof
of Theorem 1.55, we can embed C inside [0, 1]J , where J is the cardinality of the
set of all bounded continuous functions f : C → R. So, without loss of generality we
assume C ⊆ [0, 1]J . Now consider the following diagram.

Y

X C [0, 1]J RJ

inclusion
f inclusion inclusion

The above diagram gives us a map from X to RJ , i.e we J coordinate maps from X to
R. Also, each of these maps is bounded. So, by Theorem 1.55, each coordinate map
extends uniquely to Y , and hence using these coordinate extensions, we can extend the
map f to Y . Let the extended map be g. So, g : Y → RJ . We claim that g(Y ) ⊆ C.
This is true because

g(Y ) = g(X) ⊆ g(X) = f(X) ⊆ C = C

This completes the proof. ■
Theorem 1.57. Let X be completely regular. If Y1 and Y2 are two compactifications
satisfying the extension property in the above theorem, then Y1 and Y2 are equivalent.
Proof. This is a good exercise, and the idea is the following: we know that Y1 and Y2
are compact Hausdorff, which was guaranteed by Theorem 1.55. Then, just invoke
Theorem 1.56 on the inclusion maps X ↪→ Y1 and X ↪→ Y2 to get maps from Y1 to
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Y2 and Y2 to Y1 which restrict to the identity on X, and which are inverses of each
other. ■
Definition 1.33. Let X be a completely regular space. The compactification Y
of X satisfying the extension property of Theorem 1.55 is called the Stone-Čech
compactification of X.

2. Algebraic Topology

2.1. Homotopy of paths. Let f, f ′ : X → Y be continuous maps, where X,Y are
arbitrary topological spaces. We say that f is homotopic to f ′ if there is a continuous
function F : X × I → Y such that

F (x, 0) = f(x), F (x, 1) = f ′(x) ∀ x ∈ X

Here I = [0, 1] is the unit interval. In this case, we use the notation f ∼ f ′.

Definition 2.1. If f : X → Y is homotopic to a constant function c : X → Y then f
is said to be null-homotopic.

Definition 2.2. A path is a continuous map f : I → X. Two paths f, f ′ in X are said
to be path-homotopic if they have the same initial point x0 and the same final point
x1 and if there is a continuous map F : I × I → X such that for all s, t ∈ I we have

F (s, 0) = f(s) , F (s, 1) = f ′(s)

F (0, t) = x0 , F (1, t) = x1

So, F is really a homotopy that fixes two endpoints. In this case, we use the notation
f ∼p f

′.

Lemma 2.1 (Pasting Lemma). Let f : X → Y be a map such that X = A ∪ B,
where A,B are closed subsets of X. f |A and f |B are continuous. Then f is also
continuous.

Proof. Let C be a closed subset of Y . We want to show that f−1(C) is closed in X.
By hypothesis, we know that A ∩ f−1(C) is closed in A. This means that A ∩ f−1(C)
is also closed in X (because A is closed). Similarly, f−1(C) ∩B is closed in X. So,

(f−1(C) ∩ A) ∪ (f−1(C) ∩B) = f−1(C)

is closed in X, completing the proof. ■
Lemma 2.2. The relations ∼ and ∼p are equivalence relations.

Proof. Suppose f1, f2, f3 : X → Y are continuous maps, and suppose f ′
1, f

′
2, f

′
3 : I → X

are paths. It is clear that f1 ∼ f1 and f ′
1 ∼ f ′

1, by taking the constant homotopies. So
∼ and ∼p are reflexive relations.

Next, assume f1 ∼ f2 (or f ′
1 ∼p f

′
2). So, there exists a homotopy F : X× I → Y (or

a path homotopy F : I × I → X) between f1 and f2 (or f ′
1 and f ′

2). Consider the map
G(x, t) = F (x, 1− t)

and it can be easily verified that G is a homotopy between f2 and f1 (or a path
homotopy between f ′

2 and f ′
1), and this shows that ∼ and ∼p are symmetric relations.

The proof that ∼ and ∼p are transitive makes up a good exercise. As a hint, consider
using the Pasting Lemma 2.1. ■
Definition 2.3. If f is a path, then we denote its equivalent class under ∼p by [f ].
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Definition 2.4. Let X be any space. If f is a path in X from x0 to x1, and if g is a
path from x1 to x2, then the product f ∗ g of f and g is a path h : I → X defined as

h(s) =

{
f(2s) s ∈ [0, 1/2]

g(2s− 1) s ∈ [1/2, 1]

The path f ∗ g is called the concatenation of f and g.
Lemma 2.3. If f ∼p f

′ and g ∼p g
′ then f ∗ g ∼p f

′ ∗ g′, assuming both the concate-
nations are defined.
Proof. Let x0, x1 and x2 in X be the starting point of f, f ′, starting point of g, g′ and
the ending point of g, g′ respectively. Observe that

(f ∗ g)(0) = x0 , (f ′ ∗ g′)(0) = x0

(f ∗ g)(1) = x2 , (f ′ ∗ g′)(1) = x2

and this means that both paths f ∗ g and f ′ ∗ g′∗ have the same starting and ending
points.

Now, let F,G be path homotopies between f, f ′ and g, g′ respectively. Define the
map H : I × I → X by the following.

H(s, t) =

{
F (2s, t) , s ∈ [0, 1/2]

G(2s− 1, t) , s ∈ [1/2, 1]

Observe that [0, 1]×[0, 1] can be written as a union of the two closed sets [0, 1/2]×[0, 1]
and [1/2, 1] × [0, 1]. By the Pasting Lemma 2.1, it is clear that H is a continuous
map. It is then an easy check that H is a path homotopy between f ∗g and f ′ ∗g′. ■
Remark 2.3.1. So, it follows that ∗ is well-behaved under equivalence classes of paths.
So we defined [f ] ∗ [g] = [f ∗ g], given that f(1) = g(0).
Proposition 2.4. Let k : X → Y be a continuous map. Let F be a path homotopy
between two paths f, f ′ in X. Then k ◦F is a path homotopy between k ◦ f and k ◦ f ′.
Proof. Let F : I × I → X be a path homotopy between paths f, f ′ in X. Clearly,
k ◦ F is a continuous map. Now, suppose x0 = f(0) = f ′(0) and x1 = f(1) = f ′(1).
We know that

F (0, t) = x0 , F (1, t) = x1 t ∈ I

Then, we have
k ◦ F (0, t) = k(x0) , k ◦ F (1, t) = k(x1) t ∈ I

which implies that k ◦ F is a path homotopy between k ◦ f and k ◦ f ′. ■
Proposition 2.5. Let k : X → Y be a continuous map. Let f, g be paths in X such
that f(1) = g(0). Then

k ◦ (f ∗ g) = (k ◦ f) ∗ (k ◦ g)
Proof. This is an easy computation. Note that

k ◦ (f ∗ g)(s) =

{
k ◦ f(2s) , 0 ≤ s ≤ 1/2

k ◦ g(2s− 1) , 1/2 ≤ s ≤ 1

and the above is the same as the path (k ◦ f) ∗ (k ◦ g). This completes the proof. ■
Theorem 2.6. Let X be any topological space. The operation ∗ on paths in X has
the following three properties.
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(1) (Associativity) If [f ] ∗ ([g] ∗ [h]) is defined, then so is ([f ] ∗ [g]) ∗ [h], and they
are equal.

(2) (Right and left identities) Given x ∈ X, let ex : I → X denote the constant
path at x. If f is a path in X from x0 to x1, then

[f ] ∗ [ex1 ] = [f ]

and

[ex0 ] ∗ [f ] = [f ]

(3) (Inverse) Given a path in X from x0 to x1, let f : I → X be the path defined
by

f : I → X , f(s) = f(1− s)

Then [f ] ∗ [f ] = [ex0 ] and [f ] ∗ [f ] = [ex1 ].

Proof. We will be using the fact that any two paths in I with the same initial and
same final point are path homotopic, and this is true because I is a convex subset of
R.

First, let us prove (2). Let e0 denote the constant path in I at 0. Let i : I → I be
the identity map. So i is a path in I from 0 to 1. Since I ⊆ R is a convex set, there
is a path homotopy G in I between i and e0 ∗ i, i.e

I × I
G−→ I

f−→ X

By Proposition 2.4, f ◦G is a path homotopy between f ◦ i = f and f ◦ (e0 ∗ i). By
Proposition 2.5 we see that

f ◦ (e0 ∗ i) = (f ◦ e0) ∗ (f ◦ i) = ex0 ∗ f

This means that

f ∼p ex0 ∗ f

which implies that [ex0 ] ∗ [f ] = [f ]. The right identity is similarly proven.
Next, we prove (3). So let f be a path in X from x0 to x1. Let f be the path defined

by

f(s) = f(1− s)

Define the map i : I → I by i(s) = 1− s. Then i ∗ i is a path in I from 0 to 0. Since I
is convex we see that i∗ i ∼p e0. So suppose H is a path homotopy between i∗ i and e0.
So by Proposition 2.4 f ◦H is a path homotopy between f ◦ (i ∗ i) and f ◦ e0 = ex0 .
By Proposition 2.5 we have

f ◦ (i ∗ i) = (f ◦ i) ∗ (f ◦ i) = f ∗ f

and hence it follows that f ∗ f ∼p ex0 , which implies that [f ] ∗ [f ] = [ex0 ]. Similarly,
we can show that [f ] ∗ [f ] = [ex1 ], and this completes the proof.

Finally, we prove (1). Suppose [f ] ∗ ([g] ∗ [h]) is well defined. This means that
f(1) = g(0) and g(1) = h(0). Then, observe that ([f ] ∗ [g]) ∗ [h] is also well-defined.
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Observe that we have the following, which follow from the definition.

f ∗ (g ∗ h)(s) =


f(2s) , s ∈ [0, 1/2]

g(2(2s− 1)) , s ∈ [1/2, 3/4]

h(2(2s− 1)− 1) , s ∈ [3/4, 1]

(f ∗ g) ∗ h(s) =


f(2(2s)) , s ∈ [0, 1/4]

g(2(2s)− 1)) , s ∈ [1/4, 1/2]

h(2s− 1) , s ∈ [1/2, 1]

We can clearly see that they are not equal. Here is a general fact that we will use: if
[a, b], [c, d] are two intervals in R, then there is a unique map p : [a, b] → [c, d] of the
form p(x) = mx + k such that p(a) = c and p(b) = d, i.e p is a positive linear map.
Now, given 0 < a < b < 1, we define a path ka,b in X as follows:

• On [0, a], ka,b = the positive linear map of [0, a] to I followed by f

[0, a]
p−→ [0, 1]

f−→ X

i.e k = f ◦ p.
• On [a, b], we define ka,b = the positive linear map of [a, b] to I followed by g

[a, b]
p−→ [0, 1]

g−→ X

i.e ka,b = g ◦ p.
• On [b, 1], we define ka,b = the positive linear map of [b, 1] to I followed by h

[b, 1]
p−→ [0, 1]

h−→ X

i.e ka,b = h ◦ p.
We claim that for 0 < a < b < 1 and 0 < c < d < 1, the two paths ka,b and kc,d in X
are path homotopic. We will use the fact that I is convex. Let p : I → I be the map
obtained by pasting the three positive linear maps: [0, a] to [0, c], [a, b] to [c, d] and
[b, 1] to [d, 1]. Since I is convex, p and i are path homotopic (since they have the same
endpoints). Let P be the path homotopy between p and i in I. Then by Proposition
2.4 kc,d ◦ P is a path homotopy in X between kc,d ◦ p and kc,d ◦ i. Now clearly we see
that kc,d ◦ i = kc,d. We claim that

kc,d ◦ p = ka,b

but this is actually straightforward. So this means that ka,b ∼p kc,d, and this proves
the claim. We are now done, because

f ∗ (g ∗ h) = k1/2,3/4

(f ∗ g) ∗ h = k1/4,1/2

■

Definition 2.5. Let X be a topological space. A loop at x ∈ X is a path in X that
begins and ends at x. The set of path homotopy classes of loops at x is denoted by
π1(X, x). Then ∗ is a binary operation in π1(X, x). Further, by the above theorem,
∗ is associative, and the constant loop [ex] is the identity of this operation. Hence,
π1(X, x) is a group, called the fundamental group of X relative to the base point x.
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Example 2.1. Let X = Rn. Then π1(X, x) is the trivial group for all x ∈ X. This
follows because any two paths in Rn are path homotopic, if they share the same
endpoints (just use the straight line homotopy). More generally, π1(X, x) is the trivial
group if X ⊆ Rn is a convex set.

Definition 2.6. Let X be a space and x0, x1 ∈ X. Suppose α is a path in X from x0
to x1. Then we define a map α̂ : π1(X, x0) → π1(X, x1) by

[f ] 7→ [α ∗ f ∗ α]
Clearly, α̂ is well-defined on homotopy classes because ∗ is so.

Theorem 2.7. α̂ is a group isomorphism.

Proof. First, we have
α̂([f ] ∗ [g]) = [α ∗ f ∗ g ∗ α]

= [α ∗ f ∗ α ∗ α ∗ g ∗ α]
= [α ∗ f ∗ α] ∗ [α ∗ g ∗ α]
= α̂([f ]) ∗ α̂([g])

and hence α̂ is a group homomorphism. Next, let β = α. Then we have a group
homomorphism β̂ : π1(X, x1) → π1(X, x0) given by

[h] 7→ [β ∗ h ∗ β]

Now, it is an easy check that α̂ ◦ β̂ = idπ1(X,x1) and that β̂ ◦ α̂ = idπ1(X,x0), and this
implies that α̂ is a group isomorphism. ■
Corollary 2.7.1. If X is path-connected and x0, x1 ∈ X then

π1(X, x0) ∼= π1(X, x1)

So if X is path-connected, we can speak of the fundamental group of X without reference
to the base point.

Definition 2.7. A space X is said to be simply connected if it is path connected and
π1(X, x) is trivial for all x ∈ X.

Lemma 2.8. In a simply connected space X, any two paths having common endpoints
are path homotopic.

Proof. Let f, g be two paths in X having the same endpoints. Then, f ∗ g is a loop at
some point x0 ∈ X. Since X is simply connected, we know that f ∗ g ∼p ex0 . So, we
get

f ∗ g ∗ g ∼p ex0 ∗ g
=⇒ f ∗ ex1 ∼p g

=⇒ f ∼p g

and this completes the proof. ■
Definition 2.8. Let h : (X, x) → (Y, y) be a continuous map of topological spaces
such that h(x) = y. Define a map h∗ : π1(X, x) → π1(Y, y) as follows:

[f ] 7→ [h ◦ f ]

Proposition 2.9. h∗ is a well-defined map which is a group homomorphism.
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Proof. First, we show the well-definedness of h. Let f ◦p f ′, where f, f ′ are loops in X
based at x. Let F be a path homotopy between f and f ′. By Proposition 2.4, h ◦F
is a path homotopy between h ◦ f and h ◦ f ′, and hence h is a well defined map.

Next, we show that h∗ is a group homomorphism. We have
h∗([f ] ∗ [g]) = h∗([f ∗ g])

= [h ◦ (f ∗ g)]
= [(h ◦ f) ∗ (h ◦ g)]
= h∗([f ]) ∗ h∗([g])

and this completes the proof. ■
Theorem 2.10. Let h : (X, x) → (Y, y) and k : (Y, y) → (Z, z) be continuous maps.
Then

(k ◦ h)∗ = k∗ ◦ h∗
Further, if i : (X, x) → (X, x) is the identity map, then i∗ is the identity homomor-
phism.

Proof. The proof is simple. Observe that
(k∗ ◦ h∗)[f ] = k∗(h∗[f ])

= k∗([h ◦ f ])
= [k ◦ (h ◦ f)]
= [(k ◦ h) ◦ f ]
= (k ◦ h)∗[f ]

Also, we see that
i∗([f ]) = [i ◦ f ] = [f ]

■
Corollary 2.10.1. If h : (X, x) → (Y, y) is a homeomorphism, then h∗ : π1(X, x) →
π1(Y, y) is a group isomorphism.

Proof. This is a direct consequence of Theorem 2.10. Consider

(X, x)
h−→ (Y, y)

h−1

−−→ (X, x)

and use the previous theorem. ■
Corollary 2.10.2. If X,Y are path connected, and for some x ∈ X, y ∈ Y , π1(X, x)
is not isomorphic to π1(Y, y), then X and Y are not homeomorphic.

2.2. Covering Spaces. Let p : E → B be a continuous, surjective map. An open set
U ⊆ B is said to be evenly covered by p if p−1(U) can be written as a disjoint union
of open sets Vα ⊆ E such that p|Vα : Vα → U is a homeomorphism for all α. The
collection {Vα} is called a partition of p−1(U) into slices.

Definition 2.9. Let p : E → B be a continuous, surjective map. If every point of B
has a neighborhood U which is evenly covered by p, then p is called a covering map
and E is called a covering space of B.

Example 2.2. The identity map i : X → X is a covering map (in this case, there is
only 1 slice). The map p : X × {1, ..., n} → X given by p(x, i) = x for all i, x is a
covering map, where {1, ..., n} is given the discrete topology. This map has n slices.
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Proposition 2.11. If p : E → B is a covering map and b ∈ B then p−1(b) ⊆ E has
the discrete topology.
Proof. Suppose b ∈ B, and let b ∈ U be an evenly covered neighborhood of b. Let
p−1(U) =

∪
α Vα be a partition into slices. Since Vα ⊆ E is open and Vα ∩ p−1(b)

is a singleton, each point in p−1(b) is open in p−1(b). So, p−1(b) has the discrete
topology. ■
Proposition 2.12. If p : E → B is a covering map, then p is open.
Proof. Let v ⊆ E be an open set and let x ∈ p(V ). Let U be an evenly covered
neighborhood of x. Let {Vα} be a partition of p−1(U) into slices. Let y ∈ V be such
that p(y) = x. Say y ∈ Vβ for some β. Then Vβ∩V is open in Vβ. Now p(Vβ∩V ) ⊆ U is
open since p|Vβ

: Vβ → U is a homeomorphism. Since U is open in B and p(Vβ∩V ) ⊆ U
is open in U , we see that p(Vβ ∩ V ) is open in B. Observe that x ∈ U ∩ p(Vβ ∩ V ).
So, we have found an open neighborhood p(Vβ ∩ V ) of x contained in p(V ). Hence,
p(V ) ⊆ B is open. ■
Proposition 2.13. If p : E → B is a covering map, then p is a local homeomorphism,
i.e each point of E has a neighborhood that is mapped homeomorphically by p.
Proof. Let e ∈ E and b = p(e) ∈ B. Let U be an evenly covered neighborhood of b. Say
p−1(U) =

∩
α Vα is a partition into slices. Then e ∈ Vα for some α, and p|Vα : Vα → U is

a homeomorphism. Note that each Vα ⊆ E is open, and this completes the proof. ■
Theorem 2.14. The map p : R → S1 given by x 7→ (cos 2πx, sin 2πx) is a covering
map.
Proof. It is clear that p is continuous and surjective. Let

U := {(cos 2πx, sin 2πx) ∈ S1 | cos 2πx > 0}
Then

p−1(U) = {x ∈ R | cos 2πx > 0} =
∪
n∈Z

Vn

where Vn := (n− 1/4, n+1/4). We claim that U is evenly covered by p. Clearly, each
Vn is open in R, and if m 6= n we have that Vn ∩ Vm = φ. It remains to show that
p|Vn : Vn → U is a homeomorphism.

First, note that p|Vn
: [n − 1/4, n + 1/4] → U is bijective: it is one-one because

sin 2πx is monotonically increasing on Vn. It is onto because p(n − 1/4) = (−1, 0),
p(n+ 1/4) = (1, 0), and then we can just use the intermediate value theorem.

Now, it is clear that p|Vn
is continuous. Since Vn is compact and U is Hausdorff, it

follows that p|Vn
is a homeomorphism. Hence p|Vn : Vn → U is also a homeomorphism.

A similar argument shows that all the other open half circles are evenly covered
(note that U is an open half circle). So, p : R → S1 is a covering map. ■
Theorem 2.15. Consider S1 = {cos θ + i sin θ | θ ∈ [0, 2π)} as a subspace of C. The
map p : S1 → S1 given by p(z) = z2 is a covering map.
Proof. Let z ∈ S1, and we will write z = eiθ = cos θ+ i sin θ. Then p(z) = z2 = e2iθ =
cos 2θ + i sin 2θ. Let U = S1 − {1}. Then U ⊆ S1 is open. Also,

p−1(U) = {eiθ, θ ∈ [0, 2π) | (cos 2θ, sin 2θ) 6= (1, 0)} ∼= (0, π) ∪ (π, 2π) = V1 ∪ V2
It is easy to check that p|Vi

: Vi → U are homeomorphisms. So U = S1−{1} is evenly
covered. Similarly S1 − {−1} is evenly covered. So p is a covering map. ■
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Exercise 2.1. Show that the map p : S1 → S1 given by p(z) = zn is a covering map
for all n ≥ 1. Show that there are n slices.

Solution. To be completed.

Example 2.3. We now see an example of a map which is not a covering map. Let
p : R+ → S1 be the map x 7→ (cos 2πx, sin 2πx). We show that p is not a covering
map. To show this, we show that b0 = (1, 0) has not evenly covered neighborhood.
If U is any neighborhood of b0, then p−1(U) is a union of small neighborhoods Vn for
n > 0 and V0 of the form V0 = (0, ε) for some ε > 0. Complete this example!

Proposition 2.16. Let p : E → B be a covering map. If B0 is a subspace of B and
E0 = p−1(B0) then p0 = p|E0 : E0 → B0 is a covering map.

Proof. For b ∈ B0, let U ⊆ B be a neighborhood of b which is evenly covered by p. Say
p−1(U) =

∪
α Vα. Then U ∩ B0 is a neighborhood of b in B0 which is evenly covered

by p0: p0(U ∩B0) =
∪

α Vα ∩ E0. This completes the proof. ■
Proposition 2.17. Let p : E → B and p′ : E → B be covering maps. Then, the map
p× p′ : E × E ′ → B ×B′ given by (e, e′) 7→ (p(e), p′(e′)) is also a covering map.

Proof. Let b ∈ B, b′ ∈ B′ be points. Let U,U ′ be evenly covered neighborhoods of b, b′
in B,B′ respectively. Let p−1(U) =

∪
α Vα and let p−1(U ′) =

∪
β V

′
β. Then

p−1(U × U ′) =
∪
α,β

Vα × Vβ′

is a partition of p−1(U × U ′) into slices. This proves the claim. ■

2.3. Lifting of Paths. Let p : E → B be a continuous map. If f : X → B is a
continuous map, a lifting of f is a continuous map f̃ : X → E such that p ◦ f = f .
We will be most interested in lifting paths in B to E (so we usually take X = [0, 1])
when p is a covering map. This is represented via the following diagram.

E

X B

f̃

f

p

Lemma 2.18. Let p : E → B be a covering map; let p(e0) = b0. Any path f : I → B

beginning at b0 has a unique lifting to a path f̃ : I → E beginning at e0.

Proof. First we cover B by evenly covered neighborhoods {Uα}. Then, choose a sub-
division of [0, 1]: s0 = 0 < s1 < · · · < sn = 1 such that f([si, si+1]) is contained in an
evenly covered neighborhood U . This can be done as follows: clearly, {f−1(Uα)} is an
open cover of I. Since I is compact, by the Lebesgue Number Lemma 1.30 there
is some δ > 0 such that for each subset A ⊆ I of diameter ≤ δ, there is some f−1(Uα)
such that A ⊆ f−1(Uα). So, we see that

[0, s1] ∪ [s1, s2] ∪ · · · ∪ [sn−1, 1] = I

Define f̃(s0) = e0. By induction, suppose f̃ is defined on [0, si]. Next, we define f̃
on [si, si+1] as follows. Let U ⊆ B be an evenly covered neighborhood containing
f([si, si+1]). Let p−1(U) =

∪
Vα be a partition into slices. Then f(si) = p(f̃(si)) ∈ U ,
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which implies that f̃(si) ∈
∪
Vα. Since the slices are disjoint, there exists exactly one

slice, say V0, containing f̃(si).
Now, we use the homeomorphism p|V0 : V0

∼−→ U . We have the following diagram.

V0

[si, si+1] U
f

p|V0 , a homeomorphism

We need to define a map from [si, si+1] to V0 so that this diagram commutes. So, we
can just define f̃ : [si, si+1] → V0 as

f̃(s) = (p|V0)
−1(f(s))

and clearly f̃ is continuous.
Proceeding this way, we define a continuousf̃ : [0, 1] → E and by construction, it is

a lifting of f . This completes the proof of existence.
Now, let us prove uniqueness of the lifting. Let f̃ ′ be another lifting of f starting

at e0. So, we know that
f̃ ′(0) = f̃(0) = e0

and that p ◦ f̃ ′ = p ◦ f̃ = f .
Now, suppose f̃ = f̃ ′ on [0, si] (we have shown this for i = 0). Let V0 ⊆ E be an open

set as above (in the construction of f̃) such that p|V0 : V0 → U is a homeomorphism
and f̃(si) = f̃ ′(si) ∈ V0. So, we have following diagram.

V0

[si, si+1] U ⊆ B
f

p|V0
f̃

Now, since f̃ ′ is a lifting of f , we must have

f̃ ′([si, si+1]) ⊆ p−1(U) =
∪

Vα

On the other hand, slices are open, disjoint and [si, si+1 is connected. So f̃ ′([si, si+1])

is contained in a single slice. But that slice must be V0, since f̃ ′(si) ∈ V0. Then, since
f̃ ′ is a lifting, we see that

f̃ ′(s) = (p|V0)
−1(f(s)) = f̃(s)

for all s ∈ [si, si+1]. Proceeding this way, we can conclude that s ∈ [si, si+1]. This
completes the proof. ■

Lemma 2.19. Let p : E → B be a covering map and let p(e0) = b0. Let F : I×I → B
be a continuous map with F (0, 0) = b0. Then there is a unique lifting F̃ : I × I → E
such that F̃ (0, 0) = e0. If F is a path homotopy, then so is F̃ .
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E

I × I B
F

p
F̃

Proof. Proof is essentially the same as of Lemma 2.18. First, we use Lemma 2.18 to
lift F |0×I and F |I×0 (uniquely). Here I × 0 is the bottom edge of the unit square, and
0× I is the vertical edge of the square.

Now, choose subdivisions 0 = s0 < s1 < · · · < sn = 1 an 0 = t0 < t1 < · · · < tm = 1
such that

F (Ii × Jj) ⊆ some evenly covered neighborhood in B

where Ii = [si−1, si] and Jj = [tj−1, tj], and we do this by invoking the Lebesgue
Number Lemma 1.30, just like we did in Lemma 2.18. Imagine the rectangles
Ii × Jj to form a grid of the unit square.

We now define F̃ step by step: first define for all squares Ii × J1, 0 ≤ i ≤ n, then
for all squares Ii × J2, 0 ≤ i ≤ n and so on. This can be thought of as starting at the
bottom most square of the grid, finishing the bottom most row, then moving to the
second row, and so on.

Say F̃ is defined on all squares before Ii0 × Jj0 , i.e for all squares Ii × Jj for
(1) j < j0 and
(2) j = j0, i < i0.

Let A = union of I × 0, 0× I and all squares before Ii0 × Jj0 . Then,
C := A ∩ (Ii0 × Jj0)

is the union of the bottom and left edges of the square Ii0 × Jj0 . Now, F̃ is defined on
C, and C is connected. We also know that F (Ii0 × Jj0) is contained in some evenly
covered neighborhood U of B. Hence, by the connectedness of C,

F̃ (C) ⊆ a single slice of U , say V0
So, as in Lemma 2.18, extend F̃ to Ii0 × Jj0 by

F̃ (x) := (p|V0)
−1(F (x))

We continue this way to obtain F̃ : I × I → E which is a continuous lifting of F .
The proof of uniquess is exactly the same as in Lemma 2.18. We are given F̃ (0, 0) =

e0. We proceed step by step to prove uniqueness. Since C (constructed above) is
connected, any lifting of F must map a subsquare Ii × Jj to a single slice. Then we
conclude that there is only once choice for the lifting (see Lemma 2.18 details).

Finally, suppose F is a path homotopy. So F is a path homotopy between f := F |I×0

and g := FI×1 such that
F (0× I) = f(0) = g(0) = b0 , F (1× I) = f(1) = g(1)

Then F̃ will be a path homotopy between f̃ := F̃ |I×0 and g̃ := F̃ |I×1 provided:
f̃(0) = g̃(0), f̃(1) = g̃(1) and

F̃ (0× I) = f̃(0) , F̃ (1× I) = f̃(1)

Let us show that these hold. We have F (0× I) = b0, i.e F carries the left edge to b0.
Since F̃ is a lifting of F , we must have

F̃ (0× I) ⊆ p−1(b0)
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Now since F̃ is continuous, 0 × I is connected and p−1(b0) is discrete, we must have
that F̃ (0 × I) is a singleton. Since F̃ (0, 0) = e0, we have F̃ (0 × I) = e0. Similarly,
suppose F (1× I) = b1. Then we can argue that

F̃ (1× I) = e1

where p(e1) = b1. Also, we have
f̃(0) = F̃ (0, 0) = e0 = F̃ (0, 1) = g̃(0)

f̃(1) = F̃ (1, 0) = e1 = F̃ (1, 1) = g̃(1)

■
Theorem 2.20. Let p : E → B be a covering map; let p(e0) = b0. Let f, g be paths
in B from b0 to b1. Let f̃ and g̃ be their lifts to E starting at e0. If f and g are path
homotopic, then f̃ and g̃ are path homotopic, and in particular f̃(1) = g̃(1).
Proof. The proof follows from the previous lemma. Let F : I × I → B be a path
homotopy between f and g. Let F̃ : I × I → E be the unique lifting of F such that
F̃ (0, 0) = e0. So,

F |I×0 = f , F |I×1 = g

So F̃ |I×0 is a lifting of f such that F̃ (0, 0) = e0. Since f̃ is the unique such lifting, we
see that F̃ |I×0 = f̃ and similarly F̃ |I×1 = g̃. So F̃ is a path homotopy between f̃ and
g̃. ■
Definition 2.10. Let p : E → B be a covering map and let b0 ∈ B. Let e0 ∈ p−1(b0).
For [f ] ∈ π1(B, b0), let f̃ be the unique lifting to E such that f̃(0) = e0.

Define the set map φ : π1(B, b0) → p−1(b0)

[f ] 7→ f̃(1)

(note that f̃(1) ∈ p−1(b0) because f is a loop at b0). φ is a well-defined map by
Theorem 2.20, and it is called the lifting correspondence. It depends on the point e0.

Theorem 2.21. Let p : E → B be a covering map and let p(e0) = b0. Let φ :
π1(B, b0) → p−1(b0) be the lifting correspondence.

(1) If E is path connected, then φ is surjective.
(2) If E is simply connected, then φ is bijective.

Proof. To prove (1), let e1 ∈ p−1(b0). Let f̃ : I → E be a path from e0 to e1. Then let
f := p ◦ f̃ : I → B. Then φ([f ]) = f̃(1) = e1.

To prove (2), we only need to prove injectivity, as surjectivity is guaranteed by (1).
So, let [f ], [g] ∈ π1(B, b0) be such that φ([f ]) = φ([g]). If f̃ and g̃ are the lifts of
f, g respectively such that f̃(0) = g̃(0) = e0, then f̃(1) = g̃(1). Since E is simply
connected, f̃ ∼p g̃. Say F̃ is a path homotopy between f̃ and g̃. Then, p ◦ F̃ is a path
homotopy between f and g. So, [f ] = [g] in π1(B, b0). ■
Theorem 2.22. π1(S1) ∼= Z.
Proof. We work with the covering map p : R → S1 given by p(x) = (cos 2πx, sin 2πx).
Let b0 = (1, 0) ∈ S1, and let e0 = 0 ∈ R. Since R is simply connected, by Theorem
2.21 we have a bijection

φ : π1(S
1, b0) → p−1(b0) = Z
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We claim that φ is, in fact, a homomorphism.
Let [f ], [g] ∈ π1(S

1, b0); let f̃ , g̃ be their liftings to R starting at e0 = 0. Let
n = f̃(1), m = g̃(1). So, we see that φ([f ]) = n and φ([g]) = m. Consider the path
g̃′ : I → R defined by g̃′(s) = g̃(s) + n. Then p ◦ g̃′ = p ◦ g̃. So, g̃′ is a lifting of g.
Further, f̃(1) = n = g̃′(0). So, we can apply the operation ∗ to f̃ and g̃′. So, we see
that f̃ ∗ g̃′ is a path in R from 0 to n+m. Note that f̃ ∗ g̃′ is a (unique) lifting of f ∗ g
starting at 0:

p ◦ (f̃ ∗ g̃′) = (p ◦ f̃) ∗ (p ◦ g̃′) = f ∗ g
Hence, we have

φ([f ] ∗ [g]) = (f̃ ∗ g̃′)(1) = m+ n = φ([f ]) + φ([g])

and this completes the proof. ■
Remark 2.22.1. π1(S1, b0) is generated by the loop f : I → S1 given by f(s) =
(cos 2πs, sin 2πs).

2.4. Retractions and Fixed Points. Let X be a space and let A ⊆ X. A retraction
of X onto A is a continuous map r : X → A such that r|A = id. If such a map exists,
we say that A is a retract of X.

Lemma 2.23. If A ⊆ X is a retract of X, then the map j∗ : π1(A, a) → π1(X, a) is
injective, where a ∈ A and j : A→ X is the inclusion map.

Proof. By definition, we have the following:

A
j−→ X

r−→ A

such that r ◦ j = idA. Applying ∗ to the above diagram, we get the following:

π1(A, a)
j∗−→ π1(X, a)

r∗−→ π1(A, a)

such that r∗ ◦ j∗ = id. Hence, j∗ is injective. ■
Theorem 2.24 (No Retraction Theorem). S1 is not a retract of B2 = {(x, y) ∈
R2 | x2 + y2 ≤ 1}.

Proof. Just apply Lemma 2.23: if S were a retract of B2, we would get an injective
map from Z → 1, where 1 is the trivial group. ■
Exercise 2.2. Show that S1 is a retract of R2 \ {0}.

Solution. To be completed.

Theorem 2.25. Let h : S1 → X be a continuous map. Then the following are
equivalent.

(1) h is nullhomotopic, i.e h is homotopic to the constant map S1 → X.
(2) h extends to a continuous map k : B2 → X.
(3) h∗ is the trivial map of fundamental groups.

Proof. Let us first prove (1) =⇒ (2). Let H : S1 × I → X be a homotopy between h
and a constant map. The goal will be to contract S1 × I to B2 to obtain the desired
map k : B2 → X.

Consider the map π : S1 × I → B2 given by
π(x, t) = (1− t)x
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Clearly, π is identity on S1× 0. π is constant on S1× 1 and π is injective on S1× t for
all t 6= 1. It is also true that π is a continuous, closed, surjective map (need to prove
this!). Note that H is constant on S1 × I and H = f on S1 × 0. We define the map
k : B2 → X as follows.

• k(0) := H(S1 × 1) ∈ X.
• If x ∈ B2 \ {0}, k(x) := H(π−1(x)) ∈ X: this is valid since π|(S1×I)\(S1×1) :
(S1 × I) \ (S1 × 1) → B2 \ {0} is bijective (prove this!)

We claim that k is the required extension. Let x ∈ S1 ⊆ B2. Then k(x) =
H(π−1(x)) = H(x, 0) = h(x). Next, we show that k is continuous. Let A ⊆ X be a
closed set. Then k−1(A) = π(H−1(A)). Then, k−1(A) is closed since H is continuous
and π is closed.

Next, let us show that (2) =⇒ (3). Let S1 j
↪−→ B be the inclusion map. So, we have

an extension of h
S1 j

↪−→ B2 k−→ X

i.e k ◦ j = h. This implies that
h∗ = k∗ ◦ j∗

So, we have
π1(S

1, b0)
j∗−→ π1(B

2, b0)
k∗−→ π1(X, h(b0))

Since B2 ⊆ R2 is convex, we have that π1(B2, b0) ∼= 1, where 1 is the trivial group.
So, it follows that h∗ is the trivial map.

Finally, let us show that (3) =⇒ (1). Let p : R → S1 be the covering map p(x) =
(cos 2πx, sin 2πx). Denote by p0 the restriction of p to I = [0, 1]. Then, [p0] generated
π1(S

1, b0). Let h(b0) = x0 ∈ X; since h∗ is the trivial homomorphism, we see that
f := h ◦ p0 represents the identity element of π1(X, x0). Let F be a path homotopy
between f and the constant loop at x0.

Now, consider the map p̃0 := p0 × id : I × I → S1 × I. This map is a continuous,
closed, surjective map (prove this). We have the following.

p̃0(0× t) = b0 × t ∀t ∈ I

p̃0(1× t) = b0 × t ∀t ∈ I

p̃0 is injective outside 0× I, 1× I

Since F is a path homotopy, we have
F (0× I) = x0 = F (1× I) = F (I × 0)

and that F |I×1 = f = h ◦ p0. We can now define a map H : S1 × I → X as follows:
H(x, 0) = x0 for all x ∈ S1, H(x, 1) = h(x) for all x ∈ S1 and if (x, t) ∈ S1 × I for
t 6= 0, 1, we define H(x, t) = F ((p0 × id)−1(x, t)) ∈ X. Check that H is continuous,
and H is a homotopy between h and the constant map x→ x0. ■
Corollary 2.25.1. The following are true.

(1) The inclusion j : S1 → R2 \ {0} is not null-homotopic.
(2) The identity i : S1 → S1 is not null-homotopic.

Proof. We first show (1). By Exercise 2.2, we know that S1 is a retract of R2 \ {0}:
a retraction is given by r : R2 \ {0} → S1

x 7→ x

||x||
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So j∗ : π1(S
1, b0) → π1(R2 \ {0}, b0) is injective. So j cannot be null-homotopic by

Theorem 2.25.
(2) is straightforward by Theorem 2.25. ■

2.5. Brouwer and Borsuk-Ulam. In this section, we will use these tools to prove
some useful facts.

Theorem 2.26 (Brouwer’s Fixed Point Theorem). If f : B2 → B2 is a continuous
map, then there is a point x ∈ B2 such that f(x) = x.

Proof. Suppose f(x) 6= x for all x ∈ B2. Consider the ray from f(x) passing through
x, and suppose this ray meets S1 at r(x). Then we have a map r : B2 → S1 given by
x→ r(x). Then

(1) r is well-defined, since x 6= f(x) for all x ∈ B.
(2) r is continuous, since f is.
(3) If x ∈ S1, then r(x) = x.

So r : B2 → S1 is a retraction. But we know that there cannot be such a retraction,
and hence this is a contradiction. So, f must have a fixed point. ■

Theorem 2.27 (Borsuk-Ulam). Any continuous map f : S2 → R2 satisfies f(x) =
f(−x) for some point x ∈ S2.

Proof. Suppose the theorem is not true. Consider the map g : S2 → S1 given by

g(x) =
f(x)− f(−x)
|f(x)− f(−x)|

Clearly, g is continuous by hypothesis. Let η : I → S2 be the function η(s) =
(cos 2πs, sin 2πs, 0). Note that η is a loop which circles the equator of S2 once. Let
h = g ◦ η.

Now, observe that g(−x) = −g(x) for all x ∈ S2. Also, note that

h

(
s+

1

2

)
= g(cos(2πs+ π), sin(2πs+ π), 0)

= g(−cos(2πs),−sin(2πs), 0)
= −g(cos(2πs), sin(2πs), 0)
= −h(s)

As usual, let p : R → S1 be the covering map t 7→ (cos(2πt), sin(2πt)). Let h̃ be a
lifting of h to a path in R. Then

h

(
s+

1

2

)
= −h(s) =⇒ h̃

(
s+

1

2

)
= h̃(s) +

q

2

for some odd integer q. We note that q depends continuously on s, but since q is an
integer, it must be a constant. So,

h̃(1) = h̃(1/2) + q/2 = h̃(0) + q/2 + q/2 = h̃(0) + q

Hence [h] = q · a generator of π1(S1, h(0)). So [h] is not trivial.
Consider the map g∗ : π1(S

2, η(0)) → π1(S
1, h(0)) which satisfies [η] 7→ [h] 6= [e].

But observe that [η] is the trivial loop: this follows because the upper hemisphere of
S2 is homeomorphic to B2 and hence η is null-homotopic. This is a contradiction. ■
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2.6. Fundamental Theorem of Algebra. In this section, we will prove the funda-
mental theorem of algebra, which says that every non-constant polynomial f(x) ∈ C[x]
has a root in C. We now prove this.

Without loss of generality, suppose f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 is monic.

Suppose that f(x) has no complex roots. Consider the map C → S1 given by

z 7→ f(z)

|f(z)|

We choose an integer r such that r > max{|a0| + ... + |an−1|, 1}. Let S1
r = {z ∈

C | |z| = r}. Then we have the map

S1
r ↪−→ C → S1

given by

ϕ(z) =
f(z)

|f(z)|

Let η : I → S1
r be the loop at r given by η(s) = re2πis. Then we claim that ϕ∗([η])

is equal to n times the generator of π1(S1, ϕ(r)), where n as above is the degree of f .
To show this, note that we have maps I η−→ S1

r

φ−→ S1 which are

s 7→ re2πis 7→ f(re2πis)

|f(re2πis)|

Now, the generator of π1(S1, ϕ(r)) is the following loop at ϕ(r):

ρ : I → S1, s 7→ ϕ(r)e2πis =
f(r)

|f(r)|
e2πis

Now, nρ : I → S1 is the loop

s 7→ f(r)

|f(r)|
e2πins

We show that [nρ] and ϕ∗(η) are equal.
For 0 ≤ t ≤ 1, set ft(x) = xn + t(an−1x

n−1 + ... + a1x + a0). Then for |z| = r and
0 ≤ t ≤ 1 we have

|z|n = |z| · |z|n−1 = r|z|n−1(|an−1|+ · · ·+ |a0||)|zn−1|
≥ |an−1z

n−1|+ · · ·+ |a1z|+ |a0|
≥ |an−1z

n−1 + · · ·+ a1z + a0|

because r ≥ 1. This shows that ft(z) 6= 0 for 0 ≤ t ≤ 1 and |z| = r.
Next, define F : I × I → S1 by

F (s, t) =
f(r)

|f(r)|
ft(re

2πis)/ft(r)

|ft(re2πis)/ft(r)|

Since ft(z) 6= 0 for all 0 ≤ t ≤ 1 and |z| = r, we see that F (s, t) is well-defined.
Now we show that F is a path homotopy between nρ and ϕ ◦ η, which will prove

our claim.
(1) Clearly, F is a continuous function.
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(2) Suppose t = 0. So we have that f0(x) = xn. So,

F (s, 0) =
f(r)

|f(r)|
f0(re

2πis)/f0(r)

|f0(re2πis)/f0(r)|

=
f(r)

|f(r)|
e2πins

= nρ

(3) Suppose t = 1. Note that f1 = f . So,

F (s, 1) =
f(r)

|f(r)|
f1(re

2πis)/f1(r)

|f1(re2πis)/f1(r)|

=
f(re2πis)

|f(re2πis)|
= ϕ ◦ η

(4) Finally, suppose s = 0, 1. Then,

F (0, t) = F (1, t) =
f(r)

|f(r)|
ft(r)/ft(r)

|ft(r)/ft(r)|
=

f(r)

|f(r)|
= ϕ(r)

and this proves the claim, i.e this proves that [nρ] = ϕ∗(η). Since [η] ∈ π1(S
1
r , r) is a

generator, we conclude that ϕ∗ is non-trivial homomorphism. However, note that

π1(S
1
r , r)

φ∗−→ π1(S
1, ϕ(r))

given by the composition
S1
r ↪→ C → S1

is trivial, because π1(C) is the trivial group. This is a contradiction.

2.7. Some nice exercises. Here are some nice exercises to try.

Exercise 2.3. Is S1 a retract of R?

Solution. No, because π1(R) is trivial.

Exercise 2.4. Let f : B2 → B2 be a continuous function such that f(x) = x for all
x ∈ S1. Show that f is surjective. (Hint: Use the idea in the proof of the Brouwer
fixed point theorem).

Exercise 2.5. Let f : S1 → R be a continuous function. Show that there exists
x ∈ S1 such that f(x) = f(−x) (Hint: use the intermediate value theorem).

Solution. Solution on this link.

Exercise 2.6. A space X is simply connected if and only if all continuous functions
S1 → X are null-homotopic.

Exercise 2.7. Let p : E → B be a covering map, with E path connected and B
simply connected. Show that p is a homeomorphism.

https://math.stackexchange.com/questions/492599/f-s1-to-mathbb-r-is-continuous-then-fx-f-x-for-some-x-in-s1
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2.8. Deformation Retracts. In this section, we will see some special cases where
computing fundamental groups is nicer.

Definition 2.11. Let A be a subspace of a space X. We say that A is a deformation
retract of X if the following hold.

(1) A is a retract of X, i.e there exists a retraction r : X → A.
(2) j◦r and the identity map i : X → X are homotopic (where J is the inclusion of

A in X). In other words, there is some H : X × I → X such that H(x, 0) = x,
H(x, 1) ∈ A, H(a, 1) = a for all x ∈ X, a ∈ A.

In this case, H is called a deformation retraction.

Example 2.4. Let n ≥ 1. We show that Sn is a deformation retract of Rn+1 − {0}.
First, note that Sn is a retract of Rn+1 − {0} = X:

r : X → Sn, r(x) =
x

||x||

The required homotopy is given by

H : X × I → X, H(x, t) = (1− t)x+ t
x

||x||
, t ∈ I, x ∈ I

It is easy to check that H has the required properties.

Theorem 2.28. Let A be a deformation retract of X. Let x0 ∈ A. Then the inclusion
map j : A ↪→ X induces an isomorphism of fundamental groups j∗ : π1(A, x0)

∼−→
π1(X, x0).

Proof. Let r : X → A be a retraction. Since j ◦ r : X → X is homotopic to the
identity map i : X → X, we know that (j ◦ r)∗ = i∗ (prove this), and hence (j ◦ r)∗ :
π1(X, x0) → π1(X, x0) is the identity map. On the other hand, r ◦ j = iA : A → A
(where iA is the identity map). So r∗ ◦ j∗ is the identity map on π1(A, x0). So, j∗ is
an isomorphism. ■

Corollary 2.28.1. We have π1(Sn, x0) ∼= π1(Rn+1 − 0, x0), where x0 ∈ Sn. In partic-
ular, π1(R2 − 0, x0) ∼= Z.

Exercise 2.8. Let X,Y be spaces and let x0, y0 ∈ X,Y . Show that

π1(X × Y, x0 × y0) ∼= π1(X, x0)× π1(Y, y0)

Solution. Full solution needs to be written, but here is the idea. Let p, q be the
two projections X × Y → X and X × Y → Y . Consider φ : π1(X × Y, x0 × y0) →
π1(X, x0)× π1(Y, y0) given by

[f ] 7→ p∗([f ])× q∗([f ])

Show that φ is an isomorphism.

Exercise 2.9. Let x ∈ S1. Show that S1 × x0 is a retract of S1 × S1, but it is not a
deformation retract.
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2.9. A special form of Van Kampen’s Theorem. We will now look at a special
version of a very important theorem.

Theorem 2.29 (Van Kampen). Suppose X = U∪V , where U, V are open and U∩V
is path connected. Let x0 ∈ U ∩ V . Let i : U ↪→ X and j : V ↪→ X be the inclusions.
Then the images of the induced homomorphisms

i∗ : π1(U, x0) → π1(X, x0)

j∗ : π1(V, x0) → π1(X, x0)

generate π1(X, x0).

Proof. Let [f ] ∈ π1(X, x0). We show that f ∼p g1 ∗ · · · ∗ gn, where each gi is a loop at
x0 that lies in either U or V . This will complete the proof of the claim.

Step 1. There exists a subdivision a0 = 0 < a1 < · · · < an = 1 of I such that
f(ai) ∈ U ∩ V and f([ai, ai+1]) is contained in U or in V for all i.

To prove this, we will use the Lebesgue Number Lemma 1.30. We consider the
open cover f−1(U) and f−1(V ) of I. Applying the lemma, we can find a subdivision
b0 < · · · < bm of I such that f([bi−1, bi]) ⊆ U or f([bi−1, bi]) ⊆ V .

Now if each f(bi) ∈ U ∩ V , we are done. Suppose not, say f(bi) /∈ U ∩ V . We know
f([bi−1, bi]) ⊆ U or V and f([bi, bi+1]) ⊆ U or V . So,

f(bi) ∈ U =⇒ f([bi−1, bi+1]) ⊆ U (since f(bi) /∈ V in this case)
f(bi) ∈ V =⇒ f([bi−1, bi+1]) ⊆ V (since f(bi) /∈ U in this case)

So we may delete bi from the subdivision. Continuing this way, we obtain the required
subdivision.

Step 1. Let a0 < a1 < · · · an be the subdivision in Step 1. Let fi be the path in X
that equals the positive linear map of [0, 1] onto [ai−1, ai] followed by f . By the proof
of part (1) of Theorem 2.6 (the proof of associativity of the group operation), we see
that

f ∼p f1 ∗ f2 ∗ · · · ∗ fn
But note that fi are not necessarily loops in X. We get loops as follows: note that x0
and f(ai) = fi(1) = fi+1(0) are both in U ∩ V . Since U ∩ V is path connected, let αi

be a path in U ∩ V from x0 to f(ai). Let α0, αn be the constant paths at x0. Now
define

gi := αi−1 ∗ fi ∗ αi

Then gi(0) = αi−1(0) = x0 and gi(1) = αi(1) = x0. So each gi is a loop at x0, and
moreover, the image of gi lies in either U or V . We have

f ∼p f1 ∗ · · · ∗ fn ∼p g1 ∗ · · · ∗ gn
and hence the proof is complete. ■
Corollary 2.29.1. If X = U ∪ V , U, V ⊆ X are open and U ∩ V is path connected
and U, V are simply connected, then X is simply connected.

Theorem 2.30. Sn is simply connected for n ≥ 2.

Proof. Let p = (0, 0, ..., 1) ∈ Sn and q = (0, 0, ...,−1) ∈ Sn be fixed. Via the stereo-
graphic projections, we know that

Sn − p ∼= Sn − q ∼= Rn
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Now let U = Sn − p and V = Sn − q. Then U, V are open in Sn and U ∪ V = Sn.
Clearly, U, V are simply connected. Also,

U ∩ V ∼= Sn − p− q ∼= Rn − a point
Since n ≥ 2, we see that Rn − a point is path connected. So Sn is simply connected
by the previous theorem. ■
Corollary 2.30.1. Since Sn is a deformation retract of Rn − 0, it follows that Rn − 0
is simply connected if n ≥ 3.
Corollary 2.30.2. If R2 ∼= Rn then n = 2.
Proof. We already know that R 6∼= R2. So, let n ≥ 3. If there is a homeomorphism
ϕ : R2 → Rn, then we get a homeomorphism ϕ′ : R2 − 0 → Rn − ϕ(0). So, in that
case, we will get

Z ∼= π1(R2 − 0, x) ∼= π1(Rn − ϕ(0), ϕ(x)) ∼= 1

which is not possible. ■
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