Bernoulli Sandpiles on the Infinite Ladder Graph

Ashwin Padaki, Siddhant Chaudhary

5 August 2019

Ashwin Padaki, Siddhant Chaudhary Bernoulli Sandpiles on the Infinite Ladder Graph

Presentation Outline

- Basic Definitions and Properties of Sandpiles
- Bernoulli Sandpiles on the Ladder Graph
- Mod-1 Harmonic Functions
- $\textcircled{O} \quad \text{Upper Bound for } p_\tau$

Definition

A sandpile (V, E, s) consists of an undirected graph and a function $s: V \to \mathbb{Z}$.

Definition

A sandpile (V, E, s) consists of an undirected graph and a function $s: V \to \mathbb{Z}$.

The function s(v) identifies each vertex $v \in V$ with a number of "chips".

Definition

A sandpile (V, E, s) consists of an undirected graph and a function $s: V \to \mathbb{Z}$.

The function s(v) identifies each vertex $v \in V$ with a number of "chips".

To initialize a sandpile, a certain number of chips is placed on each vertex.

Definition

In a given sandpile, we call a vertex stable if

 $s(v) < \deg(v).$

Definition

In a given sandpile, we call a vertex stable if

 $s(v) < \deg(v).$

Otherwise, it is unstable and must be toppled.

Definition

In a given sandpile, we call a vertex stable if

 $s(v) < \deg(v).$

Otherwise, it is unstable and must be toppled.

Toppling a vertex v involves removing deg(v) chips from v, and adding 1 chip to each of its neighboring vertices (this is repeated until v stabilizes).

Definition

We call a sandpile *stable* if it has no unstable vertices.

Definition

We call a sandpile *stable* if it has no unstable vertices.

We say that a sandpile is *stabilizable* if there exists a sequence of topplings that will result in a stable sandpile.

Definition

We call a sandpile *stable* if it has no unstable vertices.

We say that a sandpile is *stabilizable* if there exists a sequence of topplings that will result in a stable sandpile.

We say a sandpile *explodes* or is *unstabilizable* if no such sequence of topplings exists.

We consider a stabilizable sandpile on C_4

Example 1 Notice that $2 = s(v_1) \ge \deg(v_1)$. v_4 v_3 0 2 v_1 v_2

Example 1

(after toppling v_1)

900

/⊒ ► < ∃ ►

Example 1

(after toppling v_2)

___ ► <

Example 1

(after toppling v_2)

All vertices have fewer than 2 chips \implies stable

▲ 同 ▶ → 三 ▶

We consider an unstabilizable sandpile on C_4 .

Example 2 (after v_2 topples) v_4 v_3 9 v_1 v_2

Ashwin Padaki, Siddhant Chaudhary Bernoulli Sandpiles on the Infinite Ladder Graph

/⊒ ► < ∃ ►

Example 2

(after v_4 topples)

Topplings repeat indefinitely \implies explodes.

Properties of Sandpiles

Definition

The *odometer* u(v) of a vertex v is the number of times that v topples.

Definition

A toppling of a vertex v is *illegal* if $s(v) < \deg(v)$. A sequence of topplings is *illegal* if it contains at least one illegal toppling

We can now state 2 interesting properties of sandpiles.

Properties of Sandpiles

Remark

Least Action Principle: Let T_1 and T_2 both be sequences of topplings that stabilize a sandpile s. If T_1 is legal and T_2 is not necessarily legal then

 $|T_1| \le |T_2|.$

Properties of Sandpiles

Remark

Abelian Property: Given a sandpile, any permutation of a sequence of topplings will yield the same ending configuration (including illegal ones).

We focus on sandpiles on the ladder graph.

Definition

The *finite ladder graph* is $L_n = [-n, n] \times \mathbb{Z}_2$ where adjacent vertices are connected

The ladder graph L_2 :

Ladder Graph

Definition

The *infinite ladder graph* $L = \mathbb{Z} \times \mathbb{Z}_2$ is an infinite extension of the ladder graph.

In our project, we work on the infinite ladder graph. Note that in the infinite ladder graph, each vertex has a degree of 3.

Bernoulli Sandpiles

Definition

For a given graph L_n , we define a *Bernoulli Sandpile* on L_n as the sandpile initialized by:

$$s(v) = \begin{cases} 3 & \text{with probability } p \\ 0 & \text{with probability } (1-p) \end{cases}$$

This can be extended to the infinite ladder L as well.

Bernoulli Sandpiles

Definition

We define

$$p_c(n) := \inf \left\{ p : \mathbb{P}_{p,n}\left(s \text{ explodes } \geq \frac{1}{2}\right) \right\}$$

The number $p_c(n)$ is called the *critical* or *threshold* value of p for the Bernoulli sandpile.

< (□)

- ∢ ≣ ▶

.⊒ →

Sac

Bernoulli Sandpiles

Definition

We define

$$p_c(n) := \inf \left\{ p : \mathbb{P}_{p,n}\left(s \text{ explodes } \geq \frac{1}{2}\right) \right\}$$

The number $p_c(n)$ is called the *critical* or *threshold* value of p for the Bernoulli sandpile. We can extend this to L and define

$$p_{\tau} := \inf \left\{ p : \mathbb{P}_p\left(s \text{ explodes } \geq \frac{1}{2}\right) \right\}$$

Sac

- E

Using a Java program, we approximated $p_c(n)$ for some values of n.

n	$p_c(n)$
5	0.532
10	0.542
15	0.545
20	0.547
25	0.548
30	0.549
35	0.550
40	0.550
45	0.551
50	0.551

Conservation of Density

Definition

We define $\mathbb{E}s(v)$ as the expected number of chips at a vertex v in a sandpile s.

Conservation of Density

Definition

We define $\mathbb{E}s(v)$ as the expected number of chips at a vertex v in a sandpile s.

Definition

We define s_{∞} as the final stable configuration of a stabilizable sandpile s.

Conservation of Density

Definition

We define $\mathbb{E}s(v)$ as the expected number of chips at a vertex v in a sandpile s.

Definition

We define s_{∞} as the final stable configuration of a stabilizable sandpile s.

Proposition

 s_{∞} is uniquely determined by s.

In our proof we make use of an important theorem:

Theorem

Let s be a Bernoulli sandpile on L_n or L.

Then

$$\mathbb{E}s(v) = \mathbb{E}s_{\infty}(v)$$

for all vertices v.

Definition

For a function $h: V \to \mathbb{R}$, we define the Laplacian Δh to be the function

$$\Delta h(v) := \left(\sum_{w \sim v} h(w)\right) - \deg(v)h(v)$$

Definition

A function $h: V \to \mathbb{R}$ is said to be *harmonic* if it satisfies $\Delta h(v) = 0$ for all v.

Definition

A function $h: V \to \mathbb{R}$ is said to be *mod-1-harmonic* if it satisfies $\Delta h(v) \in \mathbb{Z}$ for all v.

We constructed a harmonic function on L:

$$\begin{split} h(0,0) &= 0 \\ h(n,0) &= \left\{ B_n(2-\sqrt{3}) \right\} \quad (\forall n \in \mathbb{N}) \\ h(x,y) &= -h(x,1-y) \text{ and } h(x,y) = -h(-x,y) \end{split}$$

Ashwin Padaki, Siddhant Chaudhary Bernoulli Sandpiles on the Infinite Ladder Graph

$$h(n,0) = \left\{ B_n(2-\sqrt{3}) \right\} \quad \forall n \in \mathbb{N}$$

The sequence B_n is defined recursively as:

$$B_0 = 0$$

 $B_1 = 1$
 $B_n = 4B_{n-1} - B_{n-2}$ (for $n \ge 2$)

We can prove that the other forms for h are:

$$h(0,0) = 0$$

 $h(n,0) = B_n \cdot \alpha - B_{n-1} = \alpha^n$
for all $n \ge 1$, where $\alpha = 2 - \sqrt{3} = 0.2679....$

Ashwin Padaki, Siddhant Chaudhary

Bernoulli Sandpiles on the Infinite Ladder Graph

Proposition

If h is mod-1 harmonic at a point $(x, y) \in L$, then it is also mod-1-harmonic at points (x, 1 - y), (-x, y) and (-x, 1 - y).

Corollary

h is mod-1 harmonic at every vertex $(x, y) \in L$.

Upper Bound for p_{τ}

Definition

Let s be a sandpile on L. For the function h, define

$$(s,h) := \sum_{v \in V} h(v) s(v)$$

Upper Bound for p_{τ}

Lemma

Let s be a stabilizable Bernoulli sandpile on L. Then (s,h) and (s_{∞},h) are well-defined, and:

$$(s,h) \equiv (s_{\infty},h) \pmod{1}$$

or otherwise stated, $(s_{\infty}, h) - (s, h) \in \mathbb{Z}$

Induction on sandpile states $(s_0, s_1, s_2, \ldots, s_{\infty})$

Induction on sandpile states $(s_0, s_1, s_2, \dots, s_{\infty})$ Recall:

$$\Delta h(v) := \left(\sum_{w \sim v} h(w)\right) - \deg(v)h(v).$$

Induction on sandpile states $(s_0, s_1, s_2, \dots, s_{\infty})$ Recall:

$$\Delta h(v) := \left(\sum_{w \sim v} h(w)\right) - \deg(v)h(v).$$

Therefore: $(s_{i+1}, h) - (s_i, h) = \Delta h(v) \in \mathbb{Z}.$

Induction on sandpile states $(s_0, s_1, s_2, \dots, s_{\infty})$ Recall:

$$\Delta h(v) := \left(\sum_{w \sim v} h(w)\right) - \deg(v)h(v).$$

Therefore:
$$(s_{i+1}, h) - (s_i, h) = \Delta h(v) \in \mathbb{Z}.$$

Also:

$$|(s,h)|, |(s_{\infty},h)| \le 6\sum_{n=0}^{\infty} \alpha^n$$

Upper Bound for $p_{ au}$

Theorem

Let s be a Bernoulli sandpile on L with $p = \frac{2}{3}$. Then,

 $\mathbb{P}(s \text{ explodes}) = 1.$

Corollary $p_{\tau} < \frac{2}{3}.$

・ 同 ト ・ ヨ ト ・ ヨ

•
$$p = \frac{2}{3} \implies \mathbb{E}s(v) = 2$$

/⊒ ► < ∃ ►

•
$$p = \frac{2}{3} \implies \mathbb{E}s(v) = 2$$

• By Conservation of Density,

$$\mathbb{E}s(v) = \mathbb{E}s_{\infty}(v) = 2$$

同 ト イ ヨ ト イ ヨ ト

•
$$p = \frac{2}{3} \implies \mathbb{E}s(v) = 2$$

• By Conservation of Density,

$$\mathbb{E}s(v) = \mathbb{E}s_{\infty}(v) = 2$$

•
$$\forall v \in V, \mathbb{E}s_{\infty}(v) = 2 \implies s_{\infty}(v) = 2$$

/₽ ► ◀ ≡ ►

•
$$p = \frac{2}{3} \implies \mathbb{E}s(v) = 2$$

• By Conservation of Density,

$$\mathbb{E}s(v) = \mathbb{E}s_{\infty}(v) = 2$$

• $\forall v \in V, \mathbb{E}s_{\infty}(v) = 2 \implies s_{\infty}(v) = 2$ • This means that

$$(s_{\infty}, h) = 2\sum_{v \in V} h(v) = 0$$

• By the previous proposition $(s,h) \in \mathbb{Z}$.

• By the previous proposition $(s,h) \in \mathbb{Z}$.

•
$$\max |(s,h)| \le 6 \cdot \sum_{n=1}^{\infty} h(n,0) = 6 \cdot \frac{\alpha}{1-\alpha} = 2.196...$$

• By the previous proposition $(s,h) \in \mathbb{Z}$.

•
$$\max |(s,h)| \le 6 \cdot \sum_{n=1}^{\infty} h(n,0) = 6 \cdot \frac{\alpha}{1-\alpha} = 2.196...$$

•
$$(s,h) \in \{-2,-1,0,1,2\}$$

• By the previous proposition $(s,h) \in \mathbb{Z}$.

•
$$\max |(s,h)| \le 6 \cdot \sum_{n=1}^{\infty} h(n,0) = 6 \cdot \frac{\alpha}{1-\alpha} = 2.196...$$

•
$$(s,h) \in \{-2,-1,0,1,2\}$$

Definition

For the purposes of our research, we call an event *translation invariant* if its occurrence is not impacted by translation.

Then

$$(s,h) = 3\sum_{\substack{h(v)>0\\s(v)\neq 0}} h(v) + 3\sum_{\substack{h(v)<0\\s(v)\neq 0}} h(v) = k$$

Which gives us

$$\sum_{\substack{h(v)>0\\s(v)\neq 0}} h(v) + \sum_{\substack{h(v)<0\\s(v)\neq 0}} h(v) = \frac{k}{3}$$
(where $k \in \{0, \pm 1, \pm 2\}$)

900

-

We will show an outline for the case k = 0, as the other cases require similar techniques.

• Case
$$k = 0$$

 $(s,h) = \sum_{h(v)>0} h(v) + \sum_{h(v)<0} h(v) = 0$

which means that

$$\sum_{h(v)>0} h(v) = \sum_{h(v)<0} -h(v)$$

We can express the left and right hand sides as:

$$c_1 \alpha^{a_1} + c_2 \alpha^{a_2} \dots = d_1 \alpha^{b_1} + d_2 \alpha^{b_2} \dots$$

where $a_i, b_i \in \mathbb{N}$ and $c_i, d_i \in \{1, 2\}$

Further Conjectures

•
$$\lim_{n\to\infty} p_c(n) = p_{\tau}$$
.

• If s is a Bernoulli sandpile on L (or L_n) such that $\mathbb{E}s(v) < 1.5$, then $\mathbb{P}(s \text{ stabilizes}) = 1$. This gives a lower bound on p_{τ} , which is

$$p_{\tau} \ge \frac{1}{2}.$$

 The simulation data suggests a stronger lower bound, but we would most likely require a different approach. We would like to thank the following people:

- Our mentor: Lee Trent
- Project Proposers: Lionel Levine and Ryan McDermott
- Research Lab Organizers: Prof. David Fried and Roger Van Peski
- The PROMYS program, for giving us an opportunity to work on the project