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Abstract

Our goal will be to state the classification theorem for
the covering spaces of a path-connected, locally path
connected and semilocally simply connected space,
and apply it in some concrete situations. Our main
driving examples will be S1 and S1 ∨ S1.

Basic Definitions

Throughout the poster, a map will mean a continuous
map. Let X be any topological space. A path in X is
a map f : I → X . A homotopy of paths (with fixed
endpoints) in X is a family ft : I → X of paths for
t ∈ I such that the following hold.
1 The endpoints ft(0) and ft(1) are independent of t.
2 The associated map F : I × I → X defined by
F (s, t) = ft(s) is continuous.

In this case, we write f0 ' f1.

Proposition

Homotopy of paths with fixed basepoints is an equiv-
alence relation. The equivalences classes are called
homotopy classes.

If f, g are any paths in X with f (1) = g(0), we define
the product f · g of these paths as the path

f · g(s) =



f (2s) , 0 ≤ s ≤ 1/2
g(2s− 1) , 1/2 ≤ s ≤ 1

These tools allow us to define the fundamental group.

Fundamental Group

The set of all homotopy classes of loops in X on a
basepoint x0 ∈ X is a group with respect to the
multiplication [f ] · [g] = [f · g], where [·] represents
the homotopy class of a loop. This group is denoted
π1(X, x0)

Fundamental Group as a Functor

Suppose ϕ : (X, x0)→ (Y, y0) is a map with ϕ(x0) = y0.
Then, via the map ϕ, we can send loops in X to loops

in Y . More specifically, given a loop f in X based at
x0, ϕf (composition) is a loop in Y based at y0.

Proposition

For a map ϕ : (X, x0) → (Y, y0) as above, there is
a group homomorphism ϕ∗ : π1(X, x0) → π1(Y, y0)
given by ϕ∗([γ]) = [ϕγ] for any loop γ in X based
at x0. This is called the homomorphism induced
by ϕ. If 1 : X → X is the identity map, then 1∗ is
the identity homomorphism on π1(X, x0). Moreover,
given a composition (X, x0)

ϕ−→ (Y, y0)
ψ−→ (Z, z0), the

map ψϕ : X → Z satisfies
(ψϕ)∗ = ψ∗ϕ∗

So, the fundamental group can be viewed as a func-
tor from the category of topological spaces to the
category of groups.

This gives a great example of converting information
about topological spaces to information about groups.

Deformation Retractions

LetX be a space, and letA ⊂ X . A map r : X → A
is said to be a retraction if r|A = id. Further, r is
said to be a (weak) deformation retraction if there
is some homotopy rt with r0 = 1, rt|A = id for every t
and r1 = r. It can be shown that if r is a deformation
retraction, then if i : A ↪→ X is the inclusion map
then i∗ : π1(A, a0)→ π1(X, a0) is an isomorphism.

Deformation retractions are some of the most useful
homotopies as they can simplify our work while
computing fundamental groups. For instance, they can
be used to compute fundamental groups of graphs along
with a tool known as Van Kampen’s Theorem.

Covering Spaces

Let X be any topological space. A space X is called a
covering space of X if there is a map p : X → X
with the following property: every x ∈ X has an open
neighborhood Ux ⊂ X such that p−1(Ux) is a disjoint
union of sets in X , each of which is homeomorphic to
Ux under p. Each set in the disjoint union is called a
sheet.

Lifing Paths (Proposition)

The most useful property of covering spaces is path
lifting; given any path f in X starting at x0 and
given any x0 ∈ p−1(x0), there is a unique path f in
X starting at x0 with f = pf . A version of homotopy
lifting is also true: given any homotopy ft : I → X
of paths starting at x0 and x0 ∈ p−1(x0), there is a
unique homotopy ft : I → X of paths starting at x0
with ft = pft for each t.

An example: S1

One of the best examples of covering spaces is
given by the helix in R3, which is the set
{(cos t, sin t, t) | t ∈ R}. By projecting onto the xy
plane, this becomes a covering space for the circle
S1. By just using this information along with the
lifting properties, we can show that π1(S1) = 〈[ω]〉,
where ω is the loop that winds around S1 once. So,
we can conclude that π1(S1) ∼= Z, a very important
calculation.

The Galois Correspondence

Our driving example will be the wedge sum S1 ∨ S1,
which is two circles attached at a single point. We
will also assume in this section that all spaces are
path-connected. A basic fact about a covering map
p : X → X is that the induced homomorphism p∗ is
injective, i.e π1(X) is a subgroup of π1(X). We ask the
opposite question: does every subgroup of π1(X) corre-
spond to some covering space of X? The answer is yes,
provided that X is nice locally.

Theorem

Let (X, x0) be any path-connected, locally path
connected and semi-locally simply connected
space. Then for every subgroup H of π1(X, x0),
there is a covering space (XH, x0) with a covering
map pH : (XH, x0)→ (X, x0) such that

(pH)∗(π1(XH, x0)) = H

Theorem(contd’)

More specifically, there is a simply-connected
covering space (X, x0) of (X, x0) (i.e (X, x0) has triv-
ial fundamental group) and every other XH can be
constructed as a quotient space of X . In this case
X is called the universal cover.

A good way to look at this correspondence is using
lattices: if the lattice of subgroups of π1(X) is given,
then turning this lattice upside down gives us the lattice
of covering spaces of X corresponding to subgroups of
π1(X).

Examples: S1 and S1 ∨ S1

We know that π1(S1) ∼= Z, and as we saw earlier that
the universal cover of S1 is the helix. The lattice of Z
is fairly easy to understand; every subgroup is of the
form nZ. So the correspondence theorem above tells
us that this lattice inverted is the lattice of covering
spaces of S1, with the helix sitting at the bottom of
the lattice.
Now we consider S1∨S1. Van Kampen’s Theo-
rem can be used to conclude that π1(S1∨S1) = Z∗Z,
the free product of two Z′s. It is easy to see that Z∗Z
is just the free group 〈a, b〉 on two generators. Deter-
mining the universal cover for S1 ∨ S1 requires more
work; we will use the so called Cayley-Graph of
the free group 〈a, b〉 on two generators, and the graph
will be the universal cover for S1 ∨ S1. The vertices
of the graph will be all the elements of the free group
〈a, b〉. If g ∈ 〈a, b〉, then there will be edges connect-
ing g to ga and gb (i.e we connect g to gα for every
generator α of the group). This gives us the following
picture, in which the origin represents the identity e.


