
A fast and simple algorithm for the

maximum flow problem

Siddhant Chaudhary, Bhaskar Pandey

CMI, November 2022

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Notation and assumptions

G = (V,E) a directed network. We take n = |V | and
m = |E|.

Each edge (i, j) ∈ E has a non-negative integer capacity
uij.

U = max(s,j)∈E usj.

Flows, preflows, excesses and residual networks are
defined in the usual way.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Notation and assumptions

G = (V,E) a directed network. We take n = |V | and
m = |E|.
Each edge (i, j) ∈ E has a non-negative integer capacity
uij.

U = max(s,j)∈E usj.

Flows, preflows, excesses and residual networks are
defined in the usual way.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Notation and assumptions

G = (V,E) a directed network. We take n = |V | and
m = |E|.
Each edge (i, j) ∈ E has a non-negative integer capacity
uij.

U = max(s,j)∈E usj.

Flows, preflows, excesses and residual networks are
defined in the usual way.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Notation and assumptions

G = (V,E) a directed network. We take n = |V | and
m = |E|.
Each edge (i, j) ∈ E has a non-negative integer capacity
uij.

U = max(s,j)∈E usj.

Flows, preflows, excesses and residual networks are
defined in the usual way.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

(contd.)

A vertex will be called active if it’s excess is positive.

The source s and the sink t will never be active in the
algorithms we discuss.

For a vertex i, the edge adjacency list A(i) is the set
{(i, k) ∈ E : k ∈ V }.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

(contd.)

A vertex will be called active if it’s excess is positive.

The source s and the sink t will never be active in the
algorithms we discuss.

For a vertex i, the edge adjacency list A(i) is the set
{(i, k) ∈ E : k ∈ V }.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

(contd.)

A vertex will be called active if it’s excess is positive.

The source s and the sink t will never be active in the
algorithms we discuss.

For a vertex i, the edge adjacency list A(i) is the set
{(i, k) ∈ E : k ∈ V }.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Distance functions, admissible arcs

Given a preflow, a valid distance function d : V → Z+ is
one which satisfies the following.

1 d(t) = 0.
2 d(i) ≤ d(j) + 1 for every edge (i, j) ∈ E with positive

residual capacity.

Our algorithm will maintain a valid distance function in
each iteration.

Easy to see by induction that: d(i) is a lower bound on
the length of the shortest path from i to t in the residual
network.

An edge (i, j) in the residual network is called admissible
if it satisfies d(i) = d(j) + 1.

All algorithms in our discussion will push flow only along
admissible arcs.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Distance functions, admissible arcs

Given a preflow, a valid distance function d : V → Z+ is
one which satisfies the following.

1 d(t) = 0.

2 d(i) ≤ d(j) + 1 for every edge (i, j) ∈ E with positive
residual capacity.

Our algorithm will maintain a valid distance function in
each iteration.

Easy to see by induction that: d(i) is a lower bound on
the length of the shortest path from i to t in the residual
network.

An edge (i, j) in the residual network is called admissible
if it satisfies d(i) = d(j) + 1.

All algorithms in our discussion will push flow only along
admissible arcs.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Distance functions, admissible arcs

Given a preflow, a valid distance function d : V → Z+ is
one which satisfies the following.

1 d(t) = 0.
2 d(i) ≤ d(j) + 1 for every edge (i, j) ∈ E with positive

residual capacity.

Our algorithm will maintain a valid distance function in
each iteration.

Easy to see by induction that: d(i) is a lower bound on
the length of the shortest path from i to t in the residual
network.

An edge (i, j) in the residual network is called admissible
if it satisfies d(i) = d(j) + 1.

All algorithms in our discussion will push flow only along
admissible arcs.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Distance functions, admissible arcs

Given a preflow, a valid distance function d : V → Z+ is
one which satisfies the following.

1 d(t) = 0.
2 d(i) ≤ d(j) + 1 for every edge (i, j) ∈ E with positive

residual capacity.

Our algorithm will maintain a valid distance function in
each iteration.

Easy to see by induction that: d(i) is a lower bound on
the length of the shortest path from i to t in the residual
network.

An edge (i, j) in the residual network is called admissible
if it satisfies d(i) = d(j) + 1.

All algorithms in our discussion will push flow only along
admissible arcs.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Distance functions, admissible arcs

Given a preflow, a valid distance function d : V → Z+ is
one which satisfies the following.

1 d(t) = 0.
2 d(i) ≤ d(j) + 1 for every edge (i, j) ∈ E with positive

residual capacity.

Our algorithm will maintain a valid distance function in
each iteration.

Easy to see by induction that: d(i) is a lower bound on
the length of the shortest path from i to t in the residual
network.

An edge (i, j) in the residual network is called admissible
if it satisfies d(i) = d(j) + 1.

All algorithms in our discussion will push flow only along
admissible arcs.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Distance functions, admissible arcs

Given a preflow, a valid distance function d : V → Z+ is
one which satisfies the following.

1 d(t) = 0.
2 d(i) ≤ d(j) + 1 for every edge (i, j) ∈ E with positive

residual capacity.

Our algorithm will maintain a valid distance function in
each iteration.

Easy to see by induction that: d(i) is a lower bound on
the length of the shortest path from i to t in the residual
network.

An edge (i, j) in the residual network is called admissible
if it satisfies d(i) = d(j) + 1.

All algorithms in our discussion will push flow only along
admissible arcs.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Distance functions, admissible arcs

Given a preflow, a valid distance function d : V → Z+ is
one which satisfies the following.

1 d(t) = 0.
2 d(i) ≤ d(j) + 1 for every edge (i, j) ∈ E with positive

residual capacity.

Our algorithm will maintain a valid distance function in
each iteration.

Easy to see by induction that: d(i) is a lower bound on
the length of the shortest path from i to t in the residual
network.

An edge (i, j) in the residual network is called admissible
if it satisfies d(i) = d(j) + 1.

All algorithms in our discussion will push flow only along
admissible arcs.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Quick recap of the push-relabel paradigm

Idea is to maintain a preflow at each time step (along
with a valid distance function).

Algorithm consists of three operations: PREPROCESS,
PUSH(i) and RELABEL(i).

The PREPROCESS operation initializes the distance
function and the preflow.

1 For each edge (s, j) ∈ A(s), it sends usj units of flow.
2 It sets d(s) = n, d(t) = 0 and d(i) = 1 for each i ̸= s, t.

This is a valid distance function.

The PUSH(i) operation does the following.
1 Selects an admissible edge (i, j) ∈ A(i).
2 Sends δ = min {ei, rij} units of flow from i to j.
3 A push of flow on an edge (i, j) is said to be saturating

if δ = rij , and non-saturating otherwise.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Quick recap of the push-relabel paradigm

Idea is to maintain a preflow at each time step (along
with a valid distance function).

Algorithm consists of three operations: PREPROCESS,
PUSH(i) and RELABEL(i).

The PREPROCESS operation initializes the distance
function and the preflow.

1 For each edge (s, j) ∈ A(s), it sends usj units of flow.
2 It sets d(s) = n, d(t) = 0 and d(i) = 1 for each i ̸= s, t.

This is a valid distance function.

The PUSH(i) operation does the following.
1 Selects an admissible edge (i, j) ∈ A(i).
2 Sends δ = min {ei, rij} units of flow from i to j.
3 A push of flow on an edge (i, j) is said to be saturating

if δ = rij , and non-saturating otherwise.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Quick recap of the push-relabel paradigm

Idea is to maintain a preflow at each time step (along
with a valid distance function).

Algorithm consists of three operations: PREPROCESS,
PUSH(i) and RELABEL(i).

The PREPROCESS operation initializes the distance
function and the preflow.

1 For each edge (s, j) ∈ A(s), it sends usj units of flow.
2 It sets d(s) = n, d(t) = 0 and d(i) = 1 for each i ̸= s, t.

This is a valid distance function.

The PUSH(i) operation does the following.
1 Selects an admissible edge (i, j) ∈ A(i).
2 Sends δ = min {ei, rij} units of flow from i to j.
3 A push of flow on an edge (i, j) is said to be saturating

if δ = rij , and non-saturating otherwise.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Quick recap of the push-relabel paradigm

Idea is to maintain a preflow at each time step (along
with a valid distance function).

Algorithm consists of three operations: PREPROCESS,
PUSH(i) and RELABEL(i).

The PREPROCESS operation initializes the distance
function and the preflow.

1 For each edge (s, j) ∈ A(s), it sends usj units of flow.

2 It sets d(s) = n, d(t) = 0 and d(i) = 1 for each i ̸= s, t.
This is a valid distance function.

The PUSH(i) operation does the following.
1 Selects an admissible edge (i, j) ∈ A(i).
2 Sends δ = min {ei, rij} units of flow from i to j.
3 A push of flow on an edge (i, j) is said to be saturating

if δ = rij , and non-saturating otherwise.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Quick recap of the push-relabel paradigm

Idea is to maintain a preflow at each time step (along
with a valid distance function).

Algorithm consists of three operations: PREPROCESS,
PUSH(i) and RELABEL(i).

The PREPROCESS operation initializes the distance
function and the preflow.

1 For each edge (s, j) ∈ A(s), it sends usj units of flow.
2 It sets d(s) = n, d(t) = 0 and d(i) = 1 for each i ̸= s, t.

This is a valid distance function.

The PUSH(i) operation does the following.
1 Selects an admissible edge (i, j) ∈ A(i).
2 Sends δ = min {ei, rij} units of flow from i to j.
3 A push of flow on an edge (i, j) is said to be saturating

if δ = rij , and non-saturating otherwise.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Quick recap of the push-relabel paradigm

Idea is to maintain a preflow at each time step (along
with a valid distance function).

Algorithm consists of three operations: PREPROCESS,
PUSH(i) and RELABEL(i).

The PREPROCESS operation initializes the distance
function and the preflow.

1 For each edge (s, j) ∈ A(s), it sends usj units of flow.
2 It sets d(s) = n, d(t) = 0 and d(i) = 1 for each i ̸= s, t.

This is a valid distance function.

The PUSH(i) operation does the following.

1 Selects an admissible edge (i, j) ∈ A(i).
2 Sends δ = min {ei, rij} units of flow from i to j.
3 A push of flow on an edge (i, j) is said to be saturating

if δ = rij , and non-saturating otherwise.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Quick recap of the push-relabel paradigm

Idea is to maintain a preflow at each time step (along
with a valid distance function).

Algorithm consists of three operations: PREPROCESS,
PUSH(i) and RELABEL(i).

The PREPROCESS operation initializes the distance
function and the preflow.

1 For each edge (s, j) ∈ A(s), it sends usj units of flow.
2 It sets d(s) = n, d(t) = 0 and d(i) = 1 for each i ̸= s, t.

This is a valid distance function.

The PUSH(i) operation does the following.
1 Selects an admissible edge (i, j) ∈ A(i).

2 Sends δ = min {ei, rij} units of flow from i to j.
3 A push of flow on an edge (i, j) is said to be saturating

if δ = rij , and non-saturating otherwise.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Quick recap of the push-relabel paradigm

Idea is to maintain a preflow at each time step (along
with a valid distance function).

Algorithm consists of three operations: PREPROCESS,
PUSH(i) and RELABEL(i).

The PREPROCESS operation initializes the distance
function and the preflow.

1 For each edge (s, j) ∈ A(s), it sends usj units of flow.
2 It sets d(s) = n, d(t) = 0 and d(i) = 1 for each i ̸= s, t.

This is a valid distance function.

The PUSH(i) operation does the following.
1 Selects an admissible edge (i, j) ∈ A(i).
2 Sends δ = min {ei, rij} units of flow from i to j.

3 A push of flow on an edge (i, j) is said to be saturating
if δ = rij , and non-saturating otherwise.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Quick recap of the push-relabel paradigm

Idea is to maintain a preflow at each time step (along
with a valid distance function).

Algorithm consists of three operations: PREPROCESS,
PUSH(i) and RELABEL(i).

The PREPROCESS operation initializes the distance
function and the preflow.

1 For each edge (s, j) ∈ A(s), it sends usj units of flow.
2 It sets d(s) = n, d(t) = 0 and d(i) = 1 for each i ̸= s, t.

This is a valid distance function.

The PUSH(i) operation does the following.
1 Selects an admissible edge (i, j) ∈ A(i).
2 Sends δ = min {ei, rij} units of flow from i to j.
3 A push of flow on an edge (i, j) is said to be saturating

if δ = rij , and non-saturating otherwise.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

(contd.)

RELABEL(i) replaces d(i) by
min {d(j) + 1 : (i, j) ∈ A(i)} and rij > 0.

The idea is to create at least one admissible arc on which
further pushes can be sent.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

(contd.)

RELABEL(i) replaces d(i) by
min {d(j) + 1 : (i, j) ∈ A(i)} and rij > 0.

The idea is to create at least one admissible arc on which
further pushes can be sent.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Algorithm

1 PREPROCESS.

2 while there is an active node
1 select an active node.
2 if there is an admissible arc in A(i), then PUSH(i).
3 otherwise RELABEL(i).

Proposition

Valid distance labels are maintained in each iteration.
Moreover, the distance labels strictly increase over the
course of the algorithm.

The number of relabel steps is atmost 2n2.

The number of saturating pushes is atmost nm.

The number of non-saturating pushes is atmost 2n2m.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Algorithm

1 PREPROCESS.
2 while there is an active node

1 select an active node.
2 if there is an admissible arc in A(i), then PUSH(i).
3 otherwise RELABEL(i).

Proposition

Valid distance labels are maintained in each iteration.
Moreover, the distance labels strictly increase over the
course of the algorithm.

The number of relabel steps is atmost 2n2.

The number of saturating pushes is atmost nm.

The number of non-saturating pushes is atmost 2n2m.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Algorithm

1 PREPROCESS.
2 while there is an active node

1 select an active node.

2 if there is an admissible arc in A(i), then PUSH(i).
3 otherwise RELABEL(i).

Proposition

Valid distance labels are maintained in each iteration.
Moreover, the distance labels strictly increase over the
course of the algorithm.

The number of relabel steps is atmost 2n2.

The number of saturating pushes is atmost nm.

The number of non-saturating pushes is atmost 2n2m.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Algorithm

1 PREPROCESS.
2 while there is an active node

1 select an active node.
2 if there is an admissible arc in A(i), then PUSH(i).

3 otherwise RELABEL(i).

Proposition

Valid distance labels are maintained in each iteration.
Moreover, the distance labels strictly increase over the
course of the algorithm.

The number of relabel steps is atmost 2n2.

The number of saturating pushes is atmost nm.

The number of non-saturating pushes is atmost 2n2m.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Algorithm

1 PREPROCESS.
2 while there is an active node

1 select an active node.
2 if there is an admissible arc in A(i), then PUSH(i).
3 otherwise RELABEL(i).

Proposition

Valid distance labels are maintained in each iteration.
Moreover, the distance labels strictly increase over the
course of the algorithm.

The number of relabel steps is atmost 2n2.

The number of saturating pushes is atmost nm.

The number of non-saturating pushes is atmost 2n2m.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Algorithm

1 PREPROCESS.
2 while there is an active node

1 select an active node.
2 if there is an admissible arc in A(i), then PUSH(i).
3 otherwise RELABEL(i).

Proposition

Valid distance labels are maintained in each iteration.
Moreover, the distance labels strictly increase over the
course of the algorithm.

The number of relabel steps is atmost 2n2.

The number of saturating pushes is atmost nm.

The number of non-saturating pushes is atmost 2n2m.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Algorithm

1 PREPROCESS.
2 while there is an active node

1 select an active node.
2 if there is an admissible arc in A(i), then PUSH(i).
3 otherwise RELABEL(i).

Proposition

Valid distance labels are maintained in each iteration.
Moreover, the distance labels strictly increase over the
course of the algorithm.

The number of relabel steps is atmost 2n2.

The number of saturating pushes is atmost nm.

The number of non-saturating pushes is atmost 2n2m.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Algorithm

1 PREPROCESS.
2 while there is an active node

1 select an active node.
2 if there is an admissible arc in A(i), then PUSH(i).
3 otherwise RELABEL(i).

Proposition

Valid distance labels are maintained in each iteration.
Moreover, the distance labels strictly increase over the
course of the algorithm.

The number of relabel steps is atmost 2n2.

The number of saturating pushes is atmost nm.

The number of non-saturating pushes is atmost 2n2m.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Algorithm

1 PREPROCESS.
2 while there is an active node

1 select an active node.
2 if there is an admissible arc in A(i), then PUSH(i).
3 otherwise RELABEL(i).

Proposition

Valid distance labels are maintained in each iteration.
Moreover, the distance labels strictly increase over the
course of the algorithm.

The number of relabel steps is atmost 2n2.

The number of saturating pushes is atmost nm.

The number of non-saturating pushes is atmost 2n2m.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

The bottleneck

From the previous slide, the overall complexity is
O(nm+ n2m).

What is the bottleneck here? It is the number of
non-saturating pushes (2n2m).

Intuitively, each saturating push changes the structure of
the residual network (it deletes an edge from the
network).

However, non-saturating pushes don’t change the
structure; hence they seem more difficult to bound.

Next, we’ll see how to get a hold on the number of
non-saturating pushes: the Excess Scaling Algorithm.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

The bottleneck

From the previous slide, the overall complexity is
O(nm+ n2m).

What is the bottleneck here?

It is the number of
non-saturating pushes (2n2m).

Intuitively, each saturating push changes the structure of
the residual network (it deletes an edge from the
network).

However, non-saturating pushes don’t change the
structure; hence they seem more difficult to bound.

Next, we’ll see how to get a hold on the number of
non-saturating pushes: the Excess Scaling Algorithm.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

The bottleneck

From the previous slide, the overall complexity is
O(nm+ n2m).

What is the bottleneck here? It is the number of
non-saturating pushes (2n2m).

Intuitively, each saturating push changes the structure of
the residual network (it deletes an edge from the
network).

However, non-saturating pushes don’t change the
structure; hence they seem more difficult to bound.

Next, we’ll see how to get a hold on the number of
non-saturating pushes: the Excess Scaling Algorithm.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

The bottleneck

From the previous slide, the overall complexity is
O(nm+ n2m).

What is the bottleneck here? It is the number of
non-saturating pushes (2n2m).

Intuitively, each saturating push changes the structure of
the residual network (it deletes an edge from the
network).

However, non-saturating pushes don’t change the
structure; hence they seem more difficult to bound.

Next, we’ll see how to get a hold on the number of
non-saturating pushes: the Excess Scaling Algorithm.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

The bottleneck

From the previous slide, the overall complexity is
O(nm+ n2m).

What is the bottleneck here? It is the number of
non-saturating pushes (2n2m).

Intuitively, each saturating push changes the structure of
the residual network (it deletes an edge from the
network).

However, non-saturating pushes don’t change the
structure; hence they seem more difficult to bound.

Next, we’ll see how to get a hold on the number of
non-saturating pushes: the Excess Scaling Algorithm.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

The bottleneck

From the previous slide, the overall complexity is
O(nm+ n2m).

What is the bottleneck here? It is the number of
non-saturating pushes (2n2m).

Intuitively, each saturating push changes the structure of
the residual network (it deletes an edge from the
network).

However, non-saturating pushes don’t change the
structure; hence they seem more difficult to bound.

Next, we’ll see how to get a hold on the number of
non-saturating pushes: the Excess Scaling Algorithm.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Excess scaling algorithm

The basic idea will be to somehow do the following.

1 Push flow from active nodes with sufficiently large
excesses to nodes with sufficiently small excesses.

2 Don’t let the excesses become too large.

The number of non-saturating pushes will be reduced
from O(n2m) to O(n2 logU) (recall that
U = max(s,j)∈E usj).

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Excess scaling algorithm

The basic idea will be to somehow do the following.
1 Push flow from active nodes with sufficiently large

excesses to nodes with sufficiently small excesses.

2 Don’t let the excesses become too large.

The number of non-saturating pushes will be reduced
from O(n2m) to O(n2 logU) (recall that
U = max(s,j)∈E usj).

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Excess scaling algorithm

The basic idea will be to somehow do the following.
1 Push flow from active nodes with sufficiently large

excesses to nodes with sufficiently small excesses.
2 Don’t let the excesses become too large.

The number of non-saturating pushes will be reduced
from O(n2m) to O(n2 logU) (recall that
U = max(s,j)∈E usj).

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Excess scaling algorithm

The basic idea will be to somehow do the following.
1 Push flow from active nodes with sufficiently large

excesses to nodes with sufficiently small excesses.
2 Don’t let the excesses become too large.

The number of non-saturating pushes will be reduced
from O(n2m) to O(n2 logU) (recall that
U = max(s,j)∈E usj).

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Scaling Iterations

The algorithm consists of K scaling iterations (we will
see what K is in a moment).

For a scaling iteration, the excess dominator is defined to
be the least integer ∆ that is a power of 2 and which
satisfies ei ≤ ∆ for all i ∈ V (i.e, ∆ dominates all
excesses).

A new scaling iteration is considered to have begun if ∆
decreases by a factor of 2.

So naturally, we should start off with ∆ = 2⌈logU⌉.

And hence, the number of scaling iterations is going to be
K = 1 + ⌈logU⌉.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Scaling Iterations

The algorithm consists of K scaling iterations (we will
see what K is in a moment).

For a scaling iteration, the excess dominator is defined to
be the least integer ∆ that is a power of 2 and which
satisfies ei ≤ ∆ for all i ∈ V (i.e, ∆ dominates all
excesses).

A new scaling iteration is considered to have begun if ∆
decreases by a factor of 2.

So naturally, we should start off with ∆ = 2⌈logU⌉.

And hence, the number of scaling iterations is going to be
K = 1 + ⌈logU⌉.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Scaling Iterations

The algorithm consists of K scaling iterations (we will
see what K is in a moment).

For a scaling iteration, the excess dominator is defined to
be the least integer ∆ that is a power of 2 and which
satisfies ei ≤ ∆ for all i ∈ V (i.e, ∆ dominates all
excesses).

A new scaling iteration is considered to have begun if ∆
decreases by a factor of 2.

So naturally, we should start off with ∆ = 2⌈logU⌉.

And hence, the number of scaling iterations is going to be
K = 1 + ⌈logU⌉.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Scaling Iterations

The algorithm consists of K scaling iterations (we will
see what K is in a moment).

For a scaling iteration, the excess dominator is defined to
be the least integer ∆ that is a power of 2 and which
satisfies ei ≤ ∆ for all i ∈ V (i.e, ∆ dominates all
excesses).

A new scaling iteration is considered to have begun if ∆
decreases by a factor of 2.

So naturally, we should start off with ∆ = 2⌈logU⌉.

And hence, the number of scaling iterations is going to be
K = 1 + ⌈logU⌉.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Scaling Iterations

The algorithm consists of K scaling iterations (we will
see what K is in a moment).

For a scaling iteration, the excess dominator is defined to
be the least integer ∆ that is a power of 2 and which
satisfies ei ≤ ∆ for all i ∈ V (i.e, ∆ dominates all
excesses).

A new scaling iteration is considered to have begun if ∆
decreases by a factor of 2.

So naturally, we should start off with ∆ = 2⌈logU⌉.

And hence, the number of scaling iterations is going to be
K = 1 + ⌈logU⌉.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

(contd.)

Each scaling iteration will guarantee the following.

1 Atleast ∆/2 units of flow is pushed in every
non-saturating push.

2 The excess-dominator does not increase.

To ensure that each non-saturating push has a value of
atleast ∆/2, we:

1 only consider vertices with an excess more than ∆/2.
2 Among these vertices, we select the vertex with the

minimum distance label. This choice will ensure that the
flow is sent to a node with a small excess.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

(contd.)

Each scaling iteration will guarantee the following.
1 Atleast ∆/2 units of flow is pushed in every

non-saturating push.

2 The excess-dominator does not increase.

To ensure that each non-saturating push has a value of
atleast ∆/2, we:

1 only consider vertices with an excess more than ∆/2.
2 Among these vertices, we select the vertex with the

minimum distance label. This choice will ensure that the
flow is sent to a node with a small excess.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

(contd.)

Each scaling iteration will guarantee the following.
1 Atleast ∆/2 units of flow is pushed in every

non-saturating push.
2 The excess-dominator does not increase.

To ensure that each non-saturating push has a value of
atleast ∆/2, we:

1 only consider vertices with an excess more than ∆/2.
2 Among these vertices, we select the vertex with the

minimum distance label. This choice will ensure that the
flow is sent to a node with a small excess.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

(contd.)

Each scaling iteration will guarantee the following.
1 Atleast ∆/2 units of flow is pushed in every

non-saturating push.
2 The excess-dominator does not increase.

To ensure that each non-saturating push has a value of
atleast ∆/2, we:

1 only consider vertices with an excess more than ∆/2.
2 Among these vertices, we select the vertex with the

minimum distance label. This choice will ensure that the
flow is sent to a node with a small excess.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

(contd.)

Each scaling iteration will guarantee the following.
1 Atleast ∆/2 units of flow is pushed in every

non-saturating push.
2 The excess-dominator does not increase.

To ensure that each non-saturating push has a value of
atleast ∆/2, we:

1 only consider vertices with an excess more than ∆/2.

2 Among these vertices, we select the vertex with the
minimum distance label. This choice will ensure that the
flow is sent to a node with a small excess.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

(contd.)

Each scaling iteration will guarantee the following.
1 Atleast ∆/2 units of flow is pushed in every

non-saturating push.
2 The excess-dominator does not increase.

To ensure that each non-saturating push has a value of
atleast ∆/2, we:

1 only consider vertices with an excess more than ∆/2.
2 Among these vertices, we select the vertex with the

minimum distance label.

This choice will ensure that the
flow is sent to a node with a small excess.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

(contd.)

Each scaling iteration will guarantee the following.
1 Atleast ∆/2 units of flow is pushed in every

non-saturating push.
2 The excess-dominator does not increase.

To ensure that each non-saturating push has a value of
atleast ∆/2, we:

1 only consider vertices with an excess more than ∆/2.
2 Among these vertices, we select the vertex with the

minimum distance label. This choice will ensure that the
flow is sent to a node with a small excess.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Variables and structures we maintain

For each r = 1, 2, ..., 2n− 1, we maintain LIST(r), which
is just the set

{
i ∈ V | ei > ∆

2
, d(i) = r

}
.

The variable level will represent the smallest index r for
which LIST(r) is non-empty.

As before, we maintain the edge adjacency list A(i) for
each vertex i. Moreover, for each i, we will maintain a
current edge, which will be an edge in A(i) which is a
potential candidate for pushing flow out of i.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Variables and structures we maintain

For each r = 1, 2, ..., 2n− 1, we maintain LIST(r), which
is just the set

{
i ∈ V | ei > ∆

2
, d(i) = r

}
.

The variable level will represent the smallest index r for
which LIST(r) is non-empty.

As before, we maintain the edge adjacency list A(i) for
each vertex i. Moreover, for each i, we will maintain a
current edge, which will be an edge in A(i) which is a
potential candidate for pushing flow out of i.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Variables and structures we maintain

For each r = 1, 2, ..., 2n− 1, we maintain LIST(r), which
is just the set

{
i ∈ V | ei > ∆

2
, d(i) = r

}
.

The variable level will represent the smallest index r for
which LIST(r) is non-empty.

As before, we maintain the edge adjacency list A(i) for
each vertex i. Moreover, for each i, we will maintain a
current edge, which will be an edge in A(i) which is a
potential candidate for pushing flow out of i.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

The Algorithm

First, PREPROCESS.

K := 1 + ⌈logU⌉ (the number of scaling iterations).

for k = 1 to K
1 ∆ = 2K−k.
2 for each vertex i, if ei >

∆
2 , add it to LIST(d(i)).

3 level := 1.
4 while level < 2n

1 if LIST(level) = ϕ, then level := level + 1.
2 otherwise, select a vertex i from LIST(level), and do

PUSH/RELABEL(i).

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

The Algorithm

First, PREPROCESS.

K := 1 + ⌈logU⌉ (the number of scaling iterations).

for k = 1 to K
1 ∆ = 2K−k.
2 for each vertex i, if ei >

∆
2 , add it to LIST(d(i)).

3 level := 1.
4 while level < 2n

1 if LIST(level) = ϕ, then level := level + 1.
2 otherwise, select a vertex i from LIST(level), and do

PUSH/RELABEL(i).

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

The Algorithm

First, PREPROCESS.

K := 1 + ⌈logU⌉ (the number of scaling iterations).

for k = 1 to K

1 ∆ = 2K−k.
2 for each vertex i, if ei >

∆
2 , add it to LIST(d(i)).

3 level := 1.
4 while level < 2n

1 if LIST(level) = ϕ, then level := level + 1.
2 otherwise, select a vertex i from LIST(level), and do

PUSH/RELABEL(i).

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

The Algorithm

First, PREPROCESS.

K := 1 + ⌈logU⌉ (the number of scaling iterations).

for k = 1 to K
1 ∆ = 2K−k.

2 for each vertex i, if ei >
∆
2 , add it to LIST(d(i)).

3 level := 1.
4 while level < 2n

1 if LIST(level) = ϕ, then level := level + 1.
2 otherwise, select a vertex i from LIST(level), and do

PUSH/RELABEL(i).

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

The Algorithm

First, PREPROCESS.

K := 1 + ⌈logU⌉ (the number of scaling iterations).

for k = 1 to K
1 ∆ = 2K−k.
2 for each vertex i, if ei >

∆
2 , add it to LIST(d(i)).

3 level := 1.
4 while level < 2n

1 if LIST(level) = ϕ, then level := level + 1.
2 otherwise, select a vertex i from LIST(level), and do

PUSH/RELABEL(i).

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

The Algorithm

First, PREPROCESS.

K := 1 + ⌈logU⌉ (the number of scaling iterations).

for k = 1 to K
1 ∆ = 2K−k.
2 for each vertex i, if ei >

∆
2 , add it to LIST(d(i)).

3 level := 1.

4 while level < 2n
1 if LIST(level) = ϕ, then level := level + 1.
2 otherwise, select a vertex i from LIST(level), and do

PUSH/RELABEL(i).

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

The Algorithm

First, PREPROCESS.

K := 1 + ⌈logU⌉ (the number of scaling iterations).

for k = 1 to K
1 ∆ = 2K−k.
2 for each vertex i, if ei >

∆
2 , add it to LIST(d(i)).

3 level := 1.
4 while level < 2n

1 if LIST(level) = ϕ, then level := level + 1.
2 otherwise, select a vertex i from LIST(level), and do

PUSH/RELABEL(i).

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

The Algorithm

First, PREPROCESS.

K := 1 + ⌈logU⌉ (the number of scaling iterations).

for k = 1 to K
1 ∆ = 2K−k.
2 for each vertex i, if ei >

∆
2 , add it to LIST(d(i)).

3 level := 1.
4 while level < 2n

1 if LIST(level) = ϕ, then level := level + 1.

2 otherwise, select a vertex i from LIST(level), and do
PUSH/RELABEL(i).

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

The Algorithm

First, PREPROCESS.

K := 1 + ⌈logU⌉ (the number of scaling iterations).

for k = 1 to K
1 ∆ = 2K−k.
2 for each vertex i, if ei >

∆
2 , add it to LIST(d(i)).

3 level := 1.
4 while level < 2n

1 if LIST(level) = ϕ, then level := level + 1.
2 otherwise, select a vertex i from LIST(level), and do

PUSH/RELABEL(i).

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

The Algorithm (contd.)

The PUSH/RELABEL(i) subroutine does the following.

Starting from the current edge of i, find an admissible
edge (i, j) in A(i) with rij > 0 (incrementing the current
edge pointer if necessary).
If an admissible edge (i, j) has been found, then:

1 Push min {ei, rij ,∆− ej} units of flow on arc (i, j).
2 Update residual capacity rij and excesses ei and ej .
3 If the (updated) ei ≤ ∆/2, delete i from LIST(d(i)).
4 If j ̸= s, t and if the (updated) ej > ∆/2, then add node

j to LIST(d(j)); and set level := level− 1.

If no admissible edge is found in the previous step, then:
1 Delete i from LIST(d(i)).
2 Update label d(i) as usual.
3 Add i to LIST(d(i)), and set the current edge of i to the

first edge of A(i).

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

The Algorithm (contd.)

The PUSH/RELABEL(i) subroutine does the following.

Starting from the current edge of i, find an admissible
edge (i, j) in A(i) with rij > 0 (incrementing the current
edge pointer if necessary).

If an admissible edge (i, j) has been found, then:
1 Push min {ei, rij ,∆− ej} units of flow on arc (i, j).
2 Update residual capacity rij and excesses ei and ej .
3 If the (updated) ei ≤ ∆/2, delete i from LIST(d(i)).
4 If j ̸= s, t and if the (updated) ej > ∆/2, then add node

j to LIST(d(j)); and set level := level− 1.

If no admissible edge is found in the previous step, then:
1 Delete i from LIST(d(i)).
2 Update label d(i) as usual.
3 Add i to LIST(d(i)), and set the current edge of i to the

first edge of A(i).

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

The Algorithm (contd.)

The PUSH/RELABEL(i) subroutine does the following.

Starting from the current edge of i, find an admissible
edge (i, j) in A(i) with rij > 0 (incrementing the current
edge pointer if necessary).
If an admissible edge (i, j) has been found, then:

1 Push min {ei, rij ,∆− ej} units of flow on arc (i, j).
2 Update residual capacity rij and excesses ei and ej .
3 If the (updated) ei ≤ ∆/2, delete i from LIST(d(i)).
4 If j ̸= s, t and if the (updated) ej > ∆/2, then add node

j to LIST(d(j)); and set level := level− 1.

If no admissible edge is found in the previous step, then:
1 Delete i from LIST(d(i)).
2 Update label d(i) as usual.
3 Add i to LIST(d(i)), and set the current edge of i to the

first edge of A(i).

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

The Algorithm (contd.)

The PUSH/RELABEL(i) subroutine does the following.

Starting from the current edge of i, find an admissible
edge (i, j) in A(i) with rij > 0 (incrementing the current
edge pointer if necessary).
If an admissible edge (i, j) has been found, then:

1 Push min {ei, rij ,∆− ej} units of flow on arc (i, j).

2 Update residual capacity rij and excesses ei and ej .
3 If the (updated) ei ≤ ∆/2, delete i from LIST(d(i)).
4 If j ̸= s, t and if the (updated) ej > ∆/2, then add node

j to LIST(d(j)); and set level := level− 1.

If no admissible edge is found in the previous step, then:
1 Delete i from LIST(d(i)).
2 Update label d(i) as usual.
3 Add i to LIST(d(i)), and set the current edge of i to the

first edge of A(i).

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

The Algorithm (contd.)

The PUSH/RELABEL(i) subroutine does the following.

Starting from the current edge of i, find an admissible
edge (i, j) in A(i) with rij > 0 (incrementing the current
edge pointer if necessary).
If an admissible edge (i, j) has been found, then:

1 Push min {ei, rij ,∆− ej} units of flow on arc (i, j).
2 Update residual capacity rij and excesses ei and ej .

3 If the (updated) ei ≤ ∆/2, delete i from LIST(d(i)).
4 If j ̸= s, t and if the (updated) ej > ∆/2, then add node

j to LIST(d(j)); and set level := level− 1.

If no admissible edge is found in the previous step, then:
1 Delete i from LIST(d(i)).
2 Update label d(i) as usual.
3 Add i to LIST(d(i)), and set the current edge of i to the

first edge of A(i).

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

The Algorithm (contd.)

The PUSH/RELABEL(i) subroutine does the following.

Starting from the current edge of i, find an admissible
edge (i, j) in A(i) with rij > 0 (incrementing the current
edge pointer if necessary).
If an admissible edge (i, j) has been found, then:

1 Push min {ei, rij ,∆− ej} units of flow on arc (i, j).
2 Update residual capacity rij and excesses ei and ej .
3 If the (updated) ei ≤ ∆/2, delete i from LIST(d(i)).

4 If j ̸= s, t and if the (updated) ej > ∆/2, then add node
j to LIST(d(j)); and set level := level− 1.

If no admissible edge is found in the previous step, then:
1 Delete i from LIST(d(i)).
2 Update label d(i) as usual.
3 Add i to LIST(d(i)), and set the current edge of i to the

first edge of A(i).

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

The Algorithm (contd.)

The PUSH/RELABEL(i) subroutine does the following.

Starting from the current edge of i, find an admissible
edge (i, j) in A(i) with rij > 0 (incrementing the current
edge pointer if necessary).
If an admissible edge (i, j) has been found, then:

1 Push min {ei, rij ,∆− ej} units of flow on arc (i, j).
2 Update residual capacity rij and excesses ei and ej .
3 If the (updated) ei ≤ ∆/2, delete i from LIST(d(i)).
4 If j ̸= s, t and if the (updated) ej > ∆/2, then add node

j to LIST(d(j)); and set level := level− 1.

If no admissible edge is found in the previous step, then:
1 Delete i from LIST(d(i)).
2 Update label d(i) as usual.
3 Add i to LIST(d(i)), and set the current edge of i to the

first edge of A(i).

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

The Algorithm (contd.)

The PUSH/RELABEL(i) subroutine does the following.

Starting from the current edge of i, find an admissible
edge (i, j) in A(i) with rij > 0 (incrementing the current
edge pointer if necessary).
If an admissible edge (i, j) has been found, then:

1 Push min {ei, rij ,∆− ej} units of flow on arc (i, j).
2 Update residual capacity rij and excesses ei and ej .
3 If the (updated) ei ≤ ∆/2, delete i from LIST(d(i)).
4 If j ̸= s, t and if the (updated) ej > ∆/2, then add node

j to LIST(d(j)); and set level := level− 1.

If no admissible edge is found in the previous step, then:

1 Delete i from LIST(d(i)).
2 Update label d(i) as usual.
3 Add i to LIST(d(i)), and set the current edge of i to the

first edge of A(i).

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

The Algorithm (contd.)

The PUSH/RELABEL(i) subroutine does the following.

Starting from the current edge of i, find an admissible
edge (i, j) in A(i) with rij > 0 (incrementing the current
edge pointer if necessary).
If an admissible edge (i, j) has been found, then:

1 Push min {ei, rij ,∆− ej} units of flow on arc (i, j).
2 Update residual capacity rij and excesses ei and ej .
3 If the (updated) ei ≤ ∆/2, delete i from LIST(d(i)).
4 If j ̸= s, t and if the (updated) ej > ∆/2, then add node

j to LIST(d(j)); and set level := level− 1.

If no admissible edge is found in the previous step, then:
1 Delete i from LIST(d(i)).

2 Update label d(i) as usual.
3 Add i to LIST(d(i)), and set the current edge of i to the

first edge of A(i).

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

The Algorithm (contd.)

The PUSH/RELABEL(i) subroutine does the following.

Starting from the current edge of i, find an admissible
edge (i, j) in A(i) with rij > 0 (incrementing the current
edge pointer if necessary).
If an admissible edge (i, j) has been found, then:

1 Push min {ei, rij ,∆− ej} units of flow on arc (i, j).
2 Update residual capacity rij and excesses ei and ej .
3 If the (updated) ei ≤ ∆/2, delete i from LIST(d(i)).
4 If j ̸= s, t and if the (updated) ej > ∆/2, then add node

j to LIST(d(j)); and set level := level− 1.

If no admissible edge is found in the previous step, then:
1 Delete i from LIST(d(i)).
2 Update label d(i) as usual.

3 Add i to LIST(d(i)), and set the current edge of i to the
first edge of A(i).

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

The Algorithm (contd.)

The PUSH/RELABEL(i) subroutine does the following.

Starting from the current edge of i, find an admissible
edge (i, j) in A(i) with rij > 0 (incrementing the current
edge pointer if necessary).
If an admissible edge (i, j) has been found, then:

1 Push min {ei, rij ,∆− ej} units of flow on arc (i, j).
2 Update residual capacity rij and excesses ei and ej .
3 If the (updated) ei ≤ ∆/2, delete i from LIST(d(i)).
4 If j ̸= s, t and if the (updated) ej > ∆/2, then add node

j to LIST(d(j)); and set level := level− 1.

If no admissible edge is found in the previous step, then:
1 Delete i from LIST(d(i)).
2 Update label d(i) as usual.
3 Add i to LIST(d(i)), and set the current edge of i to the

first edge of A(i).

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Complexity of the Algorithm

Theorem

The Excess Scaling Algorithm satisfies the following.

1 Each non-saturating push from vertex i to vertex j sends
atleast ∆/2 units of flow.

2 No excess increases above ∆.

3 The number of non-saturating pushes per scaling iteration
is at most 8n2.

Proof idea for the third property. Here are the ideas at a high
level.

Define the potential function F =
∑

i∈V
eid(i)
∆

.

At the beginning of a scaling iteration, F ≤ 2n2.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Complexity of the Algorithm

Theorem

The Excess Scaling Algorithm satisfies the following.

1 Each non-saturating push from vertex i to vertex j sends
atleast ∆/2 units of flow.

2 No excess increases above ∆.

3 The number of non-saturating pushes per scaling iteration
is at most 8n2.

Proof idea for the third property. Here are the ideas at a high
level.

Define the potential function F =
∑

i∈V
eid(i)
∆

.

At the beginning of a scaling iteration, F ≤ 2n2.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Complexity of the Algorithm

Theorem

The Excess Scaling Algorithm satisfies the following.

1 Each non-saturating push from vertex i to vertex j sends
atleast ∆/2 units of flow.

2 No excess increases above ∆.

3 The number of non-saturating pushes per scaling iteration
is at most 8n2.

Proof idea for the third property. Here are the ideas at a high
level.

Define the potential function F =
∑

i∈V
eid(i)
∆

.

At the beginning of a scaling iteration, F ≤ 2n2.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Complexity of the Algorithm

Theorem

The Excess Scaling Algorithm satisfies the following.

1 Each non-saturating push from vertex i to vertex j sends
atleast ∆/2 units of flow.

2 No excess increases above ∆.

3 The number of non-saturating pushes per scaling iteration
is at most 8n2.

Proof idea for the third property. Here are the ideas at a high
level.

Define the potential function F =
∑

i∈V
eid(i)
∆

.

At the beginning of a scaling iteration, F ≤ 2n2.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Complexity of the Algorithm

Theorem

The Excess Scaling Algorithm satisfies the following.

1 Each non-saturating push from vertex i to vertex j sends
atleast ∆/2 units of flow.

2 No excess increases above ∆.

3 The number of non-saturating pushes per scaling iteration
is at most 8n2.

Proof idea for the third property. Here are the ideas at a high
level.

Define the potential function F =
∑

i∈V
eid(i)
∆

.

At the beginning of a scaling iteration, F ≤ 2n2.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Complexity of the Algorithm

Theorem

The Excess Scaling Algorithm satisfies the following.

1 Each non-saturating push from vertex i to vertex j sends
atleast ∆/2 units of flow.

2 No excess increases above ∆.

3 The number of non-saturating pushes per scaling iteration
is at most 8n2.

Proof idea for the third property. Here are the ideas at a high
level.

Define the potential function F =
∑

i∈V
eid(i)
∆

.

At the beginning of a scaling iteration, F ≤ 2n2.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Complexity of the Algorithm

Theorem

The Excess Scaling Algorithm satisfies the following.

1 Each non-saturating push from vertex i to vertex j sends
atleast ∆/2 units of flow.

2 No excess increases above ∆.

3 The number of non-saturating pushes per scaling iteration
is at most 8n2.

Proof idea for the third property. Here are the ideas at a high
level.

Define the potential function F =
∑

i∈V
eid(i)
∆

.

At the beginning of a scaling iteration, F ≤ 2n2.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

(contd.)

Then we track how much F increases/decreases over a
scaling iteration.

The only way F increases is when a vertex is relabeled.

Note that for each i, d(i) cannot be greater than 2n;
hence, the RELABEL operation can increase F by atmost
2n2.

A saturating/non-saturating push decreases F .

In a non-saturating push, we know that atleast ∆/2 units
of flow is pushed. Since d(j) = d(i)− 1, this decreases F
by atleast 1/2 units.

Since the initial value of F plus the overall increase in F
is bounded above by 4n2, this implies that there can be
atmost 8n2 non-saturating pushes.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

(contd.)

Then we track how much F increases/decreases over a
scaling iteration.

The only way F increases is when a vertex is relabeled.

Note that for each i, d(i) cannot be greater than 2n;
hence, the RELABEL operation can increase F by atmost
2n2.

A saturating/non-saturating push decreases F .

In a non-saturating push, we know that atleast ∆/2 units
of flow is pushed. Since d(j) = d(i)− 1, this decreases F
by atleast 1/2 units.

Since the initial value of F plus the overall increase in F
is bounded above by 4n2, this implies that there can be
atmost 8n2 non-saturating pushes.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

(contd.)

Then we track how much F increases/decreases over a
scaling iteration.

The only way F increases is when a vertex is relabeled.

Note that for each i, d(i) cannot be greater than 2n;
hence, the RELABEL operation can increase F by atmost
2n2.

A saturating/non-saturating push decreases F .

In a non-saturating push, we know that atleast ∆/2 units
of flow is pushed. Since d(j) = d(i)− 1, this decreases F
by atleast 1/2 units.

Since the initial value of F plus the overall increase in F
is bounded above by 4n2, this implies that there can be
atmost 8n2 non-saturating pushes.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

(contd.)

Then we track how much F increases/decreases over a
scaling iteration.

The only way F increases is when a vertex is relabeled.

Note that for each i, d(i) cannot be greater than 2n;
hence, the RELABEL operation can increase F by atmost
2n2.

A saturating/non-saturating push decreases F .

In a non-saturating push, we know that atleast ∆/2 units
of flow is pushed. Since d(j) = d(i)− 1, this decreases F
by atleast 1/2 units.

Since the initial value of F plus the overall increase in F
is bounded above by 4n2, this implies that there can be
atmost 8n2 non-saturating pushes.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

(contd.)

Then we track how much F increases/decreases over a
scaling iteration.

The only way F increases is when a vertex is relabeled.

Note that for each i, d(i) cannot be greater than 2n;
hence, the RELABEL operation can increase F by atmost
2n2.

A saturating/non-saturating push decreases F .

In a non-saturating push, we know that atleast ∆/2 units
of flow is pushed. Since d(j) = d(i)− 1, this decreases F
by atleast 1/2 units.

Since the initial value of F plus the overall increase in F
is bounded above by 4n2, this implies that there can be
atmost 8n2 non-saturating pushes.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

(contd.)

Then we track how much F increases/decreases over a
scaling iteration.

The only way F increases is when a vertex is relabeled.

Note that for each i, d(i) cannot be greater than 2n;
hence, the RELABEL operation can increase F by atmost
2n2.

A saturating/non-saturating push decreases F .

In a non-saturating push, we know that atleast ∆/2 units
of flow is pushed. Since d(j) = d(i)− 1, this decreases F
by atleast 1/2 units.

Since the initial value of F plus the overall increase in F
is bounded above by 4n2, this implies that there can be
atmost 8n2 non-saturating pushes.

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Final Bounds

The last theorem implies that the total number of
non-saturating pushes is O(n2 logU).

With a little bit of additional work, can show that the
overall complexity is O(nm+ n2 logU).

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

Final Bounds

The last theorem implies that the total number of
non-saturating pushes is O(n2 logU).

With a little bit of additional work, can show that the
overall complexity is O(nm+ n2 logU).

Siddhant Chaudhary, Bhaskar Pandey A fast and simple algorithm for the maximum flow problem

