
Paper Report

Siddhant Chaudhary

December 2022

Abstract

This is a report on the paper “A fast and simple algorithm for the maximum flow
problem” by James B. Orlin and R. K. Ahuja (1989). This paper was presented as
a part of a course on Matching and Flow Algorithms at the Chennai Mathematical
Institute.

Contents

0.1 Overview and Notation . 1
0.1.1 A review of flows and preflows. 1
0.1.2 Valid distance functions. 2

0.2 The PUSH-RELABEL Algorithm . 2
0.3 The bottleneck, and the Excess Scaling Algorithm 3

0.3.1 Description of the Excess Scaling Algorithm. 3
0.3.2 Pseudocode. 4
0.3.3 Complexity of the algorithm. 5

0.1 Overview and Notation

The paper’s main result is a new algorithm for computing the maximum flow in a flow
network, motivated by the celebrated push-relabel algorithm for the same problem. The
authors first review the push-relabel algorithm for the maximum flow problem; then they
identify the bottleneck in the algorithm and try to find a way around it. In this section,
we will introduce the relevant definitions and notation.

0.1.1 A review of flows and preflows. Throughout this report, we will be working
with a directed network G = (N,A), where N is the set of nodes, and A the set of arcs in
the network. For every arc (i, j) ∈ A, we will use the symbol uij to denote it’s (integral)
capacity. Also, we define n := |N | and m := |A|. The source s and sink t will be two
distinguished nodes in the network. We will assume that if (i, j) ∈ A, then (j, i) ∈ A
(with (j, i) possibly having zero capacity).

We will use the symbol U to denote the maximum capacity of any arc emanating from
the source vertex s, i.e

U := max
(s,j)∈A

{usj}

A flow is a function f : A → R that satisfies the following.
• For all i ∈ N − {s, t}, we have∑

{j:(j,i)∈A}

fji −
∑

{j:(i,j)∈A}

fij = 0

This is also called the flow conservation law.

December 2022

Contents Tuesday 3rd January, 2023, 06:22

• For each arc (i, j) ∈ A, we must have

0 ≤ fij ≤ uij

This is called the capacity constraint.
The maximum flow problem tries to compute a flow f such that the following quantity,
called the size of the flow f , is maximized.∑

{j:(j,t)∈A}

fjt

Next, we quickly discuss preflows. A preflow f is a function f : A → R that satisfies all
capacity constraints, and satisfies the following relaxation of the flow conservation law for
all i ∈ N − {s, t}. ∑

{j:(j,i)∈A}

fji −
∑

{j:(i,j)∈A}

fij ≥ 0

For a node i, the above quantity is called the excess at node i, and is denoted by the
symbol ei. So, for a preflow, all the excesses must be non-negative.

A node i ∈ N − {s, t} with positive excess is said to be active. The residual capacity of
an arc (i, j) ∈ A, with respect to a preflow f , is defined as

rij = uij − fij + fji

The residual network for a preflow f is defined to be the network containing only those
edges which have a positive residual capacity.

Finally, for each vertex i, we define the arc adjacency list A(i) as the set

A(i) := {(i, k) ∈ A : k ∈ N}

0.1.2 Valid distance functions. A valid distance function is a function d : N → Z+

for a preflow f that satisfies the following two conditions.
• d(t) = 0.
• d(i) ≤ d(j) + 1 for every arc (i, j) ∈ A with rij > 0.

An arc (i, j) ∈ A in the residual network is called admissible if d(i) = d(j) + 1; otherwise
it’s called an inadmissible arc.

0.2 The PUSH-RELABEL Algorithm

In this section, we will review the PUSH-RELABEL algorithm for the max flow problem.
The algorithm consists of the following three subroutines.
(1) PREPROCESS. In this subroutine, we initialize a preflow and a valid distance

function. For each arc (s, j) ∈ A(s), send usj units of flow. Also, initialize d(s) = n,
d(t) = 0 and d(i) = 1 for all i ̸= s, t. It can be easily verified that this is a valid
distance function.

(2) PUSH(i). Here, we select an admissible arc (i, j) in A(i), and send δ = min {ei, rij}
units of flow from node i to j.

A push of flow on arc (i, j) is said to be saturating if δ = rij , and non-saturating
otherwise.

(3) RELABEL(i). Here, we just replace d(i) by min {d(j) + 1 : (i, j) ∈ A(i) and rij > 0}.
This is called a relabel step.

The PUSH-RELABEl algorithm can be described by the following pseudocode.

2

Contents Tuesday 3rd January, 2023, 06:22

Algorithm 1 PUSH-RELABEL Algorithm

1: PREPROCESS.
2: while there is an active node do
3: Select an active node i.
4: if there is an admissible arc in A(i) then
5: PUSH(i).
6: else
7: RELABEL(i).
8: end if
9: end while

Proposition 0.1. The PUSH-RELABEL algorithm satisfies the following properties.
(1) It maintains valid distance labels at each step. The distance labels only increase

over the course of the algorithm, and at each step, the distance label of some node
strictly increases.

(2) For each node i ∈ N , d(i) < 2n.
(3) The number of relabel steps is less than 2n2.
(4) The number of saturating pushes is atmost nm.
(5) The number of non-saturating pushes is atmost 2n2m.

From this proposition, one can easily conclude that the time complexity of the PUSH-
RELABEL algorithm is O(nm+ n2m).

0.3 The bottleneck, and the Excess Scaling Algorithm

The authors remark that the bottleneck operation in many preflow-based algorithms
is the number of non-saturating pushes. Intuitively, each saturating push changes the
structure of the residual network (by removing an edge from the network). However, a
non-saturating push doesn’t change this structure, and hence it becomes difficult to bound
the total number of non-saturating pushes. The main result of the paper, namely the
Excess Scaling Algorithm, relies on a good upper bound on the number of non-saturating
pushes.

The authors have shown that their algorithm reduces the number of non-saturating pushes
from O(n2m) to O(n2 logU). In the upcoming sections, we will describe the algorithm.

0.3.1 Description of the Excess Scaling Algorithm. The algorithm consists of a
number of iterations, called scaling iterations. Each scaling iteration roughly does the
following.
(1) For each scaling iteration, we define the excess dominator to be the least integer ∆

that is a power of 2 and which satisfies ei ≤ ∆ for all i ∈ V .
(2) After each scaling iteration, we ensure that ∆ decreases by a factor of 2.
(3) Note that when we initialize our preflow in the PREPROCESS subroutine, the max-

imum possible excess on any vertex is precisely max(s,j)∈A {usj}, which we denoted

by U . So naturally, we will start off with ∆ = 2⌈logU⌉.
(4) Since each scaling iteration decreases ∆ by a factor of 2, we see that there will be

1 + ⌈logU⌉ scaling iterations.

Suppose ∆ is the excess dominator at start of a scaling iteration. We will somehow
guarantee that each non-saturating push during this pushes atleast ∆/2 units of flow;
this will help us in bounding the number of non-saturating pushes better. Moreover, we
also have to ensure that during a scaling iteration, the excess dominator never increases.

3

Contents Tuesday 3rd January, 2023, 06:22

To ensure that each non-saturating push has a value of atleast ∆/2, we do the following.
(1) In a scaling iteration, we only push flow from vertices with an excess more than

∆/2.
(2) Moreover, among all vertices with excess more than ∆/2, we push flow from the

vertex with the minimum distance label. Since we push flow on only admissible
edges, this choice will ensure that flow is being pushed to a vertex with excess
atmost ∆/2.

Next, we describe the data structures that are maintained throughout the algorithm.
(1) For each r ∈ {1, 2, ..., 2n− 1}, we maintain a list denoted by LIST(r); this list will

just be the set {
i ∈ V : ei >

δ

2
, d(i) = r

}
Note that since d is a valid distance function, d(i) < 2n for all i at all times in the
algorithm. Hence, we only need to maintain these lists for values of r atmost 2n−1.
In practice, LIST(r) for each r will be implemented as a linked list, in which we can
add and remove elements in O(1) time.

(2) We will maintain a variable called level, which will represent the smallest index r
for which LIST(r) is non-empty.

(3) For each vertex i, an edge adjacency list A(i) will be maintained. Moreover, for
each i, we will maintain a current edge, which will be an edge in A(i) which is a
potential candidate for pushing flow out of i.

0.3.2 Pseudocode. The algorithm can be described precisely by the given pseudocode.
It consists of the subroutine PUSH/RELABEL(i), for which we’ve also provided the
pseudocode.

Algorithm 2 Excess Scaling Algorithm

1: PREPROCESS.
2: K := 1 + ⌈logU⌉ ▷ The number of scaling iterations
3: for k = 1 to K do
4: ∆ = 2K−k ▷ The excess dominator
5: for each vertex i do
6: if ei > ∆/2 then
7: Add i to LIST(d(i))
8: end if
9: end for

10: level := 1.
11: while level < 2n do
12: If LIST(level) = ϕ, then level := level+ 1.
13: Otherwise, select a vertex i from LIST(level), and do PUSH/RELABEL(i).
14: end while
15: end for

4

Contents Tuesday 3rd January, 2023, 06:22

Algorithm 3 PUSH/RELABEL(i)

1: Starting from the current edge of i, find an admissible edge (i, j) ∈ A(i) with rij > 0,
incrementing the current edge pointer if necessary.

2: if an admissible edge (i, j) has been found then
3: Push min {ei, rij ,∆− ej} units of flow on arc (i, j).
4: Update residual capacity rij and excesses ei and ej .
5: If (updated) ei ≤ ∆/2, delete i from LIST(d(i)).
6: If j ̸= s, t and if the (updated) ej > ∆/2, then add node j to LIST(d(j)); and set

level := level− 1.
7: else ▷ No admissible edge found in the previous step
8: Delete i from LIST(d(i)).
9: Update label d(i) as usual.

10: Add i to LIST(d(i)), and set the current edge of i to the first edge of A(i).
11: end if

Lines 11-13 of the main algorithm do the following: among all vertices with excess more
than ∆/2, select the vertex with the minimum distance label, and try to push flow out
of it; if not, relabel it. Line 3 of the PUSH/RELABEL(i) subroutine makes sure that,
if the push is non-saturating, atleast ∆/2 units of flow is pushed. This is quite easy to
see: if the push is non-saturating, then the minimum of the three quantities is actually
the minimum of {ei,∆− ej}; we know that ei > ∆/2 and ej ≤ ∆/2 (since (i, j) is an
admissible edge, and i is the vertex with minimum distance label among all vertices with
excess more than ∆/2); hence, the minimum of these two quantities is atleast ∆/2.

Proposition 0.2. The Excess scaling algorithm satisfies the following.
(1) Each non-saturating push from vertex i to vertex j sends atleast ∆/2 units of flow.
(2) No excess ever increases above ∆ withing a scaling iteration.
(3) The number of non-saturating pushes per scaling iteration is at most 8n2.

The above three claims are not hard to prove. The third claim is proved by defining a
potential function F for a scaling iteration by

F =
∑
i∈V

eid(i)

∆

The idea is to track how much F increases/decreases over a scaling iteration. It can be
shown that whenever a push is done, F decreases; using this along with the fact that
each non-saturating push has a value of atleast ∆/2, it can be shown that the number of
non-saturating pushes is atmost 8n2.

0.3.3 Complexity of the algorithm. Finally, with a little bit of additional work and
using the facts mentioned in the previous section, one can show that the complexity of
the Excess Scaling algorithm is O(nm + n2 logU). Here, the term nm comes from an
upper bound on the number of saturating pushes, and the term n2 logU comes from the
upper bound on the number of non-saturating pushes. As before, the number of relabel
operations is again O(n2).

5

	Overview and Notation
	A review of flows and preflows.
	Valid distance functions.

	The PUSH-RELABEL Algorithm
	The bottleneck, and the Excess Scaling Algorithm
	Description of the Excess Scaling Algorithm.
	Pseudocode.
	Complexity of the algorithm.

