Randomized Computation

Siddhant Chaudhary

PROMYS 2021

Flip Coins!

(1) Randomization is the technique of using outcomes of experiments in designing useful algorithms.

Flip Coins!

(1) Randomization is the technique of using outcomes of experiments in designing useful algorithms.
(2) An example could be the generation of random numbers (technically, pseudorandom number generation) in an algorithm.

Flip Coins!

(1) Randomization is the technique of using outcomes of experiments in designing useful algorithms.
(2) An example could be the generation of random numbers (technically, pseudorandom number generation) in an algorithm.
(3) Mathematically defined as languages recognized by Probabilistic Turing Machines with small error bound.
The class of languages is denoted BPP (Trivially
$\mathbf{P} \subseteq \mathbf{B P P}$. Converse is an open problem).

Our first randomized algorithm - PIT

- You are working in the ring $F\left[x_{1}, \ldots, x_{n}\right]$, where F is a field. Often $F=\mathbb{Q}$.

Our first randomized algorithm - PIT

- You are working in the ring $F\left[x_{1}, \ldots, x_{n}\right]$, where F is a field. Often $F=\mathbb{Q}$.
- $f\left(x_{1}, \ldots, x_{n}\right), g\left(x_{1}, \ldots, x_{n}\right) \in F\left[x_{1}, \ldots, x_{n}\right]$.

Our first randomized algorithm - PIT

- You are working in the ring $F\left[x_{1}, \ldots, x_{n}\right]$, where F is a field. Often $F=\mathbb{Q}$.
- $f\left(x_{1}, \ldots, x_{n}\right), g\left(x_{1}, \ldots, x_{n}\right) \in F\left[x_{1}, \ldots, x_{n}\right]$.
- Need to determine whether

$$
f=g
$$

which is the same as determining whether

$$
f-g=0
$$

Our first randomized algorithm - PIT

Example

In some scenarios, either f or g might be given in terms of linear factors. For instance, we might need to verify the following.

$$
\prod_{i=1}^{6}(x-i) \stackrel{?}{=} x^{6}-7 x^{3}+25
$$

Expanding the product is not a good idea! If the 6 is replaced by a large constant, this becomes difficult.

A Useful Tool

Proposition

(Schwartz-Zippel) Let $p\left(x_{1}, \ldots, x_{n}\right)$ be any non-zero element of $F\left[x_{1}, \ldots, x_{n}\right]$ of degree d. Let $S \subseteq F$ be any finite set. If a_{1}, \ldots, a_{n} are picked uniformly at random from S, then

$$
\mathbf{P}\left[p\left(a_{1}, \ldots, a_{n}\right)=0\right] \leq \frac{d}{|S|}
$$

The Proof

- By induction on the number of variables n; the base case of one variable is easy.

The Proof

- By induction on the number of variables n; the base case of one variable is easy.
- Assume the claim holds for all polynomials with atmost $n-1$ variables.

The Proof

- By induction on the number of variables n; the base case of one variable is easy.
- Assume the claim holds for all polynomials with atmost $n-1$ variables.
- Regard p as a single variable polynomial with coefficients in $F\left[x_{1}, \ldots, x_{n-1}\right]$. Formally, we are using

$$
F\left[x_{1}, \ldots, x_{n}\right] \cong F\left[x_{1}, \ldots, x_{n-1}\right]\left[x_{n}\right]
$$

The Proof

- So we write

$$
p\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{d} x_{n}^{i} p_{i}\left(x_{1}, \ldots, x_{n-1}\right)
$$

The Proof

- So we write

$$
p\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{d} x_{n}^{i} p_{i}\left(x_{1}, \ldots, x_{n-1}\right)
$$

- Since $p \neq 0$, there is a maximum index $j \leq d$ such that $p_{j}\left(x_{1}, \ldots, x_{n-1}\right) \neq 0$. So, we can write

$$
p\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{j} x_{n}^{i} p_{i}\left(x_{1}, \ldots, x_{n-1}\right)
$$

The Proof

- Since p has degree d, we note that

$$
\operatorname{deg} p_{k} \leq d-k
$$

for each $0 \leq k \leq j$. In particular, we have $\operatorname{deg} p_{j} \leq d-j$. Applying the induction hypothesis p_{j}, we see that

$$
\mathbf{P}_{a_{1}, \ldots, a_{n-1} \in S}\left[p_{j}\left(a_{1}, \ldots, a_{n-1}\right)=0\right] \leq \frac{d-j}{|S|}
$$

The Proof

- We condition the event $p\left(a_{1}, \ldots, a_{n-1}, a_{n}\right)=0$ based on two mutually exclusive and exhaustive events.

The Proof

- We condition the event $p\left(a_{1}, \ldots, a_{n-1}, a_{n}\right)=0$ based on two mutually exclusive and exhaustive events.
(1) In the first case, $p\left(a_{1}, \ldots, a_{n-1}, a_{n}\right)=0$ and $p_{j}\left(a_{1}, \ldots, a_{n-1}\right)=0$. By the trivial bound,

$$
\begin{aligned}
& \mathbf{P}\left[p\left(a_{1}, \ldots, a_{n-1}, a_{n}\right)=0 \wedge p_{j}\left(a_{1}, \ldots, a_{n-1}\right)=0\right] \\
& \leq \mathbf{P}\left[p_{j}\left(a_{1}, \ldots, a_{n-1}\right)=0\right] \\
& \leq \frac{d-j}{|S|}
\end{aligned}
$$

The Proof

- We condition the event $p\left(a_{1}, \ldots, a_{n-1}, a_{n}\right)=0$ based on two mutually exclusive and exhaustive events.
(1) In the first case, $p\left(a_{1}, \ldots, a_{n-1}, a_{n}\right)=0$ and $p_{j}\left(a_{1}, \ldots, a_{n-1}\right)=0$. By the trivial bound,

$$
\begin{aligned}
& \mathbf{P}\left[p\left(a_{1}, \ldots, a_{n-1}, a_{n}\right)=0 \wedge p_{j}\left(a_{1}, \ldots, a_{n-1}\right)=0\right] \\
& \leq \mathbf{P}\left[p_{j}\left(a_{1}, \ldots, a_{n-1}\right)=0\right] \\
& \leq \frac{d-j}{|S|}
\end{aligned}
$$

(2) In the second case, $p\left(a_{1}, \ldots, a_{n-1}, a_{n}\right)=0$ and $p_{j}\left(a_{1}, \ldots, a_{n-1}\right) \neq 0$. Consider the one variable polynomial

$$
g(x)=p\left(a_{1}, \ldots, a_{n-1}, x\right)=\sum_{i=0}^{j} x^{i} p_{i}\left(a_{1}, \ldots, a_{n-1}\right)
$$

The Proof

- By the one variable bound, we have

$$
\mathbf{P}_{a_{n} \in S}\left[g\left(a_{n}\right)=0\right] \leq \frac{j}{|S|}
$$

The Proof

- By the one variable bound, we have

$$
\mathbf{P}_{a_{n} \in S}\left[g\left(a_{n}\right)=0\right] \leq \frac{j}{|S|}
$$

- Summing the two probabilities above, we get

$$
\mathbf{P}\left[p\left(a_{1}, \ldots, a_{n}\right)=0\right] \leq \frac{d-j}{|S|}+\frac{j}{|S|}=\frac{d}{|S|}
$$

Application to PIT

- Suppose our input polynomials are $f, g \in F\left[x_{1}, \ldots, x_{n}\right]$; we need to determine whether

$$
f-g=0
$$

Application to PIT

- Suppose our input polynomials are $f, g \in F\left[x_{1}, \ldots, x_{n}\right]$; we need to determine whether

$$
f-g=0
$$

- Take $S \subseteq F$ such that $|S|=100 d$.

Application to PIT

- Suppose our input polynomials are $f, g \in F\left[x_{1}, \ldots, x_{n}\right]$; we need to determine whether

$$
f-g=0
$$

- Take $S \subseteq F$ such that $|S|=100 d$.
- Pick a random vector $\left(a_{1}, \ldots, a_{n}\right) \in S^{n}$, and check the equality

$$
(f-g)\left(a_{1}, \ldots, a_{n}\right)=0
$$

If the equality is true, return TRUE; otherwise return FALSE.

Application to PIT

- Suppose our input polynomials are $f, g \in F\left[x_{1}, \ldots, x_{n}\right]$; we need to determine whether

$$
f-g=0
$$

- Take $S \subseteq F$ such that $|S|=100 d$.
- Pick a random vector $\left(a_{1}, \ldots, a_{n}\right) \in S^{n}$, and check the equality

$$
(f-g)\left(a_{1}, \ldots, a_{n}\right)=0
$$

If the equality is true, return TRUE; otherwise return FALSE.

- By Schwarz-Zippel, we have a one-sided error bound of $\frac{d}{100 d}=\frac{1}{100}$, which is very small!

Applying PIT to Bipartite Matching

- Bipartite Graph: two teams, 1V1 matches within the two teams.

Applying PIT to Bipartite Matching

- Bipartite Graph: two teams, 1V1 matches within the two teams.
- We are interested in perfect matchings. This means that a player from one team can play against atmost one player from the second team, and every player from either team has to play.

Applying PIT to Bipartite Matching

- Bipartite Graph: two teams, 1V1 matches within the two teams.
- We are interested in perfect matchings. This means that a player from one team can play against atmost one player from the second team, and every player from either team has to play.

Figure: Edges in cyan form a perfect matching.

Applying PIT to Bipartite Matching

- Suppose the bipartition is $V_{1} \cup V_{2}$ with $\left|V_{1}\right|=\left|V_{2}\right|=n$.

Applying PIT to Bipartite Matching

- Suppose the bipartition is $V_{1} \cup V_{2}$ with $\left|V_{1}\right|=\left|V_{2}\right|=n$.
- Let A_{G} be the symbolic adjacency matrix, defined as follows.

$$
A_{G}[i j]= \begin{cases}x_{i j} & , \quad \text { if } i \in V_{1} \text { and } j \in V_{2} \text { are connected } \\ 0, & \text { otherwise }\end{cases}
$$

Applying PIT to Bipartite Matching

- Suppose the bipartition is $V_{1} \cup V_{2}$ with $\left|V_{1}\right|=\left|V_{2}\right|=n$.
- Let A_{G} be the symbolic adjacency matrix, defined as follows.

$$
A_{G}[i j]= \begin{cases}x_{i j} & , \quad \text { if } i \in V_{1} \text { and } j \in V_{2} \text { are connected } \\ 0 & , \quad \text { otherwise }\end{cases}
$$

- In the graph in the previous slide, A_{G} is the following matrix.

$$
A_{G}=\left[\begin{array}{cccc}
0 & x_{12} & 0 & 0 \\
x_{21} & 0 & 0 & x_{24} \\
0 & x_{32} & x_{33} & 0 \\
0 & 0 & x_{43} & x_{44}
\end{array}\right]
$$

Applying PIT to Bipartite Matching

- Our polynomial will be $\operatorname{det} A_{G}$, a polynomial in n^{2} variables.

Applying PIT to Bipartite Matching

- Our polynomial will be $\operatorname{det} A_{G}$, a polynomial in n^{2} variables.
- Use the permutation expansion of the determinant.

$$
\operatorname{det} A_{G}=\sum_{\sigma \in S_{n}} \epsilon(\sigma) A_{1 \sigma(1)} \cdots A_{n \sigma(n)}
$$

Applying PIT to Bipartite Matching

- Our polynomial will be $\operatorname{det} A_{G}$, a polynomial in n^{2} variables.
- Use the permutation expansion of the determinant.

$$
\operatorname{det} A_{G}=\sum_{\sigma \in S_{n}} \epsilon(\sigma) A_{1 \sigma(1)} \cdots A_{n \sigma(n)}
$$

- Claim: G has a perfect matching if and only if

$$
\operatorname{det} A_{G} \neq 0
$$

Applying PIT to Bipartite Matching

- Our polynomial will be $\operatorname{det} A_{G}$, a polynomial in n^{2} variables.
- Use the permutation expansion of the determinant.

$$
\operatorname{det} A_{G}=\sum_{\sigma \in S_{n}} \epsilon(\sigma) A_{1 \sigma(1)} \cdots A_{n \sigma(n)}
$$

- Claim: G has a perfect matching if and only if

$$
\operatorname{det} A_{G} \neq 0
$$

- Use PIT with $F=\mathbb{Q}$ to get a randomized algorithm.

Verifying Matrix Multiplication

- F is our base field (for simplicity, let $F=\mathbb{F}_{2}$). We are given matrices A, B and C of dimension $n \times n$.

Verifying Matrix Multiplication

- F is our base field (for simplicity, let $F=\mathbb{F}_{2}$). We are given matrices A, B and C of dimension $n \times n$.
- We want to verify the equation

$$
A B=C
$$

If we use the usual matrix-multiplication algorithm, the time taken is $\Theta\left(n^{3}\right)$.

Verifying Matrix Multiplication

- F is our base field (for simplicity, let $F=\mathbb{F}_{2}$). We are given matrices A, B and C of dimension $n \times n$.
- We want to verify the equation

$$
A B=C
$$

If we use the usual matrix-multiplication algorithm, the time taken is $\Theta\left(n^{3}\right)$.

- Instead, we use a randomized approach; pick a vector $\boldsymbol{r}=\left(r_{1}, \ldots, r_{n}\right) \in F^{n}$ uniformly at random. Check the equality

$$
(A B) \boldsymbol{r}=C \boldsymbol{r}
$$

If the equality holds, return TRUE; else return FALSE.

Verifying Matrix Multiplication

- Claim: if $A B \neq C$ and $F=\mathbb{F}_{2}$, then

$$
\mathbf{P}[A B \boldsymbol{r}=C \boldsymbol{r}] \leq \frac{1}{2}
$$

Verifying Matrix Multiplication

- Claim: if $A B \neq C$ and $F=\mathbb{F}_{2}$, then

$$
\mathbf{P}[A B \boldsymbol{r}=C \boldsymbol{r}] \leq \frac{1}{2}
$$

- If M is any non-zero $n \times n$ matrix, then it has some non-zero entry, say M_{11}. Also,

$$
M \boldsymbol{r}=0 \Longrightarrow \sum_{j=1}^{n} M_{1 j} r_{j}=0
$$

which means

$$
r_{1}=\frac{-\sum_{j=2}^{n} M_{1 j} r_{j}}{M_{11}}
$$

Verifying Matrix Multiplication

- Now condition on the values $\left(r_{2}, \ldots, r_{n}\right)$, i.e fix $\left(r_{2}, \ldots, r_{n}\right)$. Verify now that the last equation holds with probability less than $\frac{1}{2}$.

Verifying Matrix Multiplication

- Now condition on the values $\left(r_{2}, \ldots, r_{n}\right)$, i.e fix $\left(r_{2}, \ldots, r_{n}\right)$. Verify now that the last equation holds with probability less than $\frac{1}{2}$.
- Summing up all the conditional probabilities, we obtain

$$
\mathbf{P}[A B \boldsymbol{r}=C \boldsymbol{r}] \leq \frac{1}{2}
$$

Verifying Matrix Multiplication

- Now condition on the values $\left(r_{2}, \ldots, r_{n}\right)$, i.e fix $\left(r_{2}, \ldots, r_{n}\right)$. Verify now that the last equation holds with probability less than $\frac{1}{2}$.
- Summing up all the conditional probabilities, we obtain

$$
\mathbf{P}[A B \boldsymbol{r}=C \boldsymbol{r}] \leq \frac{1}{2}
$$

- So our algorithm has a one-sided error less than $\frac{1}{2}$; still not very nice. How to fix this?

Verifying Matrix Multiplication

- Now condition on the values $\left(r_{2}, \ldots, r_{n}\right)$, i.e fix $\left(r_{2}, \ldots, r_{n}\right)$. Verify now that the last equation holds with probability less than $\frac{1}{2}$.
- Summing up all the conditional probabilities, we obtain

$$
\mathbf{P}[A B \boldsymbol{r}=C \boldsymbol{r}] \leq \frac{1}{2}
$$

- So our algorithm has a one-sided error less than $\frac{1}{2}$; still not very nice. How to fix this?
- Repeat the algorithm t times independently, to make the error probability less than $\left(\frac{1}{2}\right)^{t}$. $t=100$ will give a good enough bound.

Randomization is powerful

- Used in universal and perfect hashing, a powerful technique for storing and querying large amounts of data in average $O(1)$ time.

Randomization is powerful

- Used in universal and perfect hashing, a powerful technique for storing and querying large amounts of data in average $O(1)$ time.
- Primality Tests, like Miller-Rabin.

Randomization is powerful

- Used in universal and perfect hashing, a powerful technique for storing and querying large amounts of data in average $O(1)$ time.
- Primality Tests, like Miller-Rabin.
- Get as accurate as you want! One-sided errors can be made as small as possible, by introducing a parameter. This is just the idea of independence of events.

Randomization is powerful

- Used in universal and perfect hashing, a powerful technique for storing and querying large amounts of data in average $O(1)$ time.
- Primality Tests, like Miller-Rabin.
- Get as accurate as you want! One-sided errors can be made as small as possible, by introducing a parameter. This is just the idea of independence of events.
- Hope you enjoyed the discussion!

