
Randomized Computation

Siddhant Chaudhary

PROMYS 2021

Siddhant Chaudhary Randomized Computation



Flip Coins!

1 Randomization is the technique of using outcomes of
experiments in designing useful algorithms.

2 An example could be the generation of random numbers
(technically, pseudorandom number generation) in an
algorithm.

3 Mathematically defined as languages recognized by
Probabilistic Turing Machines with small error bound.
The class of languages is denoted BPP (Trivially
P ⊆ BPP. Converse is an open problem).
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Our first randomized algorithm - PIT

You are working in the ring F [x1, ..., xn], where F is a
field. Often F = Q.

f(x1, ..., xn), g(x1, ..., xn) ∈ F [x1, ..., xn].

Need to determine whether

f = g

which is the same as determining whether

f − g = 0
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Our first randomized algorithm - PIT

Example

In some scenarios, either f or g might be given in terms of
linear factors. For instance, we might need to verify the
following.

6∏
i=1

(x− i) ?
= x6 − 7x3 + 25

Expanding the product is not a good idea! If the 6 is replaced
by a large constant, this becomes difficult.
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A Useful Tool

Proposition

(Schwartz-Zippel) Let p(x1, ..., xn) be any non-zero element
of F [x1, ..., xn] of degree d. Let S ⊆ F be any finite set. If
a1, ..., an are picked uniformly at random from S, then

P[p(a1, ..., an) = 0] ≤ d

|S|
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The Proof

By induction on the number of variables n ; the base case
of one variable is easy.

Assume the claim holds for all polynomials with atmost
n− 1 variables.

Regard p as a single variable polynomial with coefficients
in F [x1, ..., xn−1]. Formally, we are using

F [x1, ..., xn] ∼= F [x1, ..., xn−1][xn]
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The Proof

So we write

p(x1, ..., xn) =
d∑
i=0

xinpi(x1, ..., xn−1)

Since p 6= 0, there is a maximum index j ≤ d such that
pj(x1, ..., xn−1) 6= 0. So, we can write

p(x1, ..., xn) =

j∑
i=0

xinpi(x1, ..., xn−1)
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The Proof

Since p has degree d, we note that

deg pk ≤ d− k

for each 0 ≤ k ≤ j. In particular, we have deg pj ≤ d− j.
Applying the induction hypothesis pj, we see that

Pa1,...,an−1∈S[pj(a1, ..., an−1) = 0] ≤ d− j
|S|
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The Proof

We condition the event p(a1, ..., an−1, an) = 0 based on
two mutually exclusive and exhaustive events.

1 In the first case, p(a1, ..., an−1, an) = 0 and
pj(a1, ..., an−1) = 0. By the trivial bound,

P[p(a1, ..., an−1, an) = 0 ∧ pj(a1, ..., an−1) = 0]

≤ P[pj(a1, ..., an−1) = 0]

≤ d− j

|S|

2 In the second case, p(a1, ..., an−1, an) = 0 and
pj(a1, ..., an−1) 6= 0. Consider the one variable
polynomial

g(x) = p(a1, ..., an−1, x) =

j∑
i=0

xipi(a1, ..., an−1)
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The Proof

By the one variable bound, we have

Pan∈S[g(an) = 0] ≤ j

|S|

Summing the two probabilities above, we get

P[p(a1, ..., an) = 0] ≤ d− j
|S|

+
j

|S|
=

d

|S|
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Application to PIT

Suppose our input polynomials are f, g ∈ F [x1, ..., xn];
we need to determine whether

f − g = 0

Take S ⊆ F such that |S| = 100d.

Pick a random vector (a1, ..., an) ∈ Sn, and check the
equality

(f − g)(a1, ..., an) = 0

If the equality is true, return TRUE; otherwise return
FALSE.

By Schwarz-Zippel, we have a one-sided error bound of
d

100d
=

1

100
, which is very small!
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Applying PIT to Bipartite Matching

Bipartite Graph: two teams, 1V1 matches within the
two teams.

We are interested in perfect matchings. This means
that a player from one team can play against atmost one
player from the second team, and every player from either
team has to play.

Figure: Edges in cyan form a perfect matching.
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Applying PIT to Bipartite Matching

Suppose the bipartition is V1 ∪ V2 with |V1| = |V2| = n.

Let AG be the symbolic adjacency matrix, defined as
follows.

AG[ij] =

{
xij , if i ∈ V1 and j ∈ V2 are connected

0 , otherwise

In the graph in the previous slide, AG is the following
matrix.

AG =


0 x12 0 0
x21 0 0 x24
0 x32 x33 0
0 0 x43 x44


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Applying PIT to Bipartite Matching

Our polynomial will be detAG, a polynomial in n2

variables.

Use the permutation expansion of the determinant.

detAG =
∑
σ∈Sn

ε(σ)A1σ(1) · · ·Anσ(n)

Claim: G has a perfect matching if and only if

detAG 6= 0

Use PIT with F = Q to get a randomized algorithm.
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Verifying Matrix Multiplication

F is our base field (for simplicity, let F = F2). We are
given matrices A,B and C of dimension n× n.

We want to verify the equation

AB = C

If we use the usual matrix-multiplication algorithm, the
time taken is Θ(n3).

Instead, we use a randomized approach; pick a vector
r = (r1, ..., rn) ∈ F n uniformly at random. Check the
equality

(AB)r = Cr

If the equality holds, return TRUE; else return FALSE.
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Verifying Matrix Multiplication

Claim: if AB 6= C and F = F2, then

P[ABr = Cr] ≤ 1

2

If M is any non-zero n× n matrix, then it has some
non-zero entry, say M11. Also,

Mr = 0 =⇒
n∑
j=1

M1jrj = 0

which means

r1 =
−
∑n

j=2M1jrj

M11
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Verifying Matrix Multiplication

Now condition on the values (r2, ..., rn), i.e fix (r2, ..., rn).
Verify now that the last equation holds with probability

less than
1

2
.

Summing up all the conditional probabilities, we obtain

P[ABr = Cr] ≤ 1

2

So our algorithm has a one-sided error less than 1
2
; still

not very nice. How to fix this?

Repeat the algorithm t times independently, to make the
error probability less than

(
1
2

)t
. t = 100 will give a good

enough bound.
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Randomization is powerful

Used in universal and perfect hashing, a powerful
technique for storing and querying large amounts of data
in average O(1) time.

Primality Tests, like Miller-Rabin.

Get as accurate as you want! One-sided errors can be
made as small as possible, by introducing a parameter.
This is just the idea of independence of events.

Hope you enjoyed the discussion!
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