
Randomized Computation

Siddhant Chaudhary

PROMYS 2021

Siddhant Chaudhary Randomized Computation

Flip Coins!

1 Randomization is the technique of using outcomes of
experiments in designing useful algorithms.

2 An example could be the generation of random numbers
(technically, pseudorandom number generation) in an
algorithm.

3 Mathematically defined as languages recognized by
Probabilistic Turing Machines with small error bound.
The class of languages is denoted BPP (Trivially
P ⊆ BPP. Converse is an open problem).

Siddhant Chaudhary Randomized Computation

Flip Coins!

1 Randomization is the technique of using outcomes of
experiments in designing useful algorithms.

2 An example could be the generation of random numbers
(technically, pseudorandom number generation) in an
algorithm.

3 Mathematically defined as languages recognized by
Probabilistic Turing Machines with small error bound.
The class of languages is denoted BPP (Trivially
P ⊆ BPP. Converse is an open problem).

Siddhant Chaudhary Randomized Computation

Flip Coins!

1 Randomization is the technique of using outcomes of
experiments in designing useful algorithms.

2 An example could be the generation of random numbers
(technically, pseudorandom number generation) in an
algorithm.

3 Mathematically defined as languages recognized by
Probabilistic Turing Machines with small error bound.
The class of languages is denoted BPP (Trivially
P ⊆ BPP. Converse is an open problem).

Siddhant Chaudhary Randomized Computation

Our first randomized algorithm - PIT

You are working in the ring F [x1, ..., xn], where F is a
field. Often F = Q.

f(x1, ..., xn), g(x1, ..., xn) ∈ F [x1, ..., xn].

Need to determine whether

f = g

which is the same as determining whether

f − g = 0

Siddhant Chaudhary Randomized Computation

Our first randomized algorithm - PIT

You are working in the ring F [x1, ..., xn], where F is a
field. Often F = Q.

f(x1, ..., xn), g(x1, ..., xn) ∈ F [x1, ..., xn].

Need to determine whether

f = g

which is the same as determining whether

f − g = 0

Siddhant Chaudhary Randomized Computation

Our first randomized algorithm - PIT

You are working in the ring F [x1, ..., xn], where F is a
field. Often F = Q.

f(x1, ..., xn), g(x1, ..., xn) ∈ F [x1, ..., xn].

Need to determine whether

f = g

which is the same as determining whether

f − g = 0

Siddhant Chaudhary Randomized Computation

Our first randomized algorithm - PIT

Example

In some scenarios, either f or g might be given in terms of
linear factors. For instance, we might need to verify the
following.

6∏
i=1

(x− i) ?
= x6 − 7x3 + 25

Expanding the product is not a good idea! If the 6 is replaced
by a large constant, this becomes difficult.

Siddhant Chaudhary Randomized Computation

A Useful Tool

Proposition

(Schwartz-Zippel) Let p(x1, ..., xn) be any non-zero element
of F [x1, ..., xn] of degree d. Let S ⊆ F be any finite set. If
a1, ..., an are picked uniformly at random from S, then

P[p(a1, ..., an) = 0] ≤ d

|S|

Siddhant Chaudhary Randomized Computation

The Proof

By induction on the number of variables n ; the base case
of one variable is easy.

Assume the claim holds for all polynomials with atmost
n− 1 variables.

Regard p as a single variable polynomial with coefficients
in F [x1, ..., xn−1]. Formally, we are using

F [x1, ..., xn] ∼= F [x1, ..., xn−1][xn]

Siddhant Chaudhary Randomized Computation

The Proof

By induction on the number of variables n ; the base case
of one variable is easy.

Assume the claim holds for all polynomials with atmost
n− 1 variables.

Regard p as a single variable polynomial with coefficients
in F [x1, ..., xn−1]. Formally, we are using

F [x1, ..., xn] ∼= F [x1, ..., xn−1][xn]

Siddhant Chaudhary Randomized Computation

The Proof

By induction on the number of variables n ; the base case
of one variable is easy.

Assume the claim holds for all polynomials with atmost
n− 1 variables.

Regard p as a single variable polynomial with coefficients
in F [x1, ..., xn−1]. Formally, we are using

F [x1, ..., xn] ∼= F [x1, ..., xn−1][xn]

Siddhant Chaudhary Randomized Computation

The Proof

So we write

p(x1, ..., xn) =
d∑
i=0

xinpi(x1, ..., xn−1)

Since p 6= 0, there is a maximum index j ≤ d such that
pj(x1, ..., xn−1) 6= 0. So, we can write

p(x1, ..., xn) =

j∑
i=0

xinpi(x1, ..., xn−1)

Siddhant Chaudhary Randomized Computation

The Proof

So we write

p(x1, ..., xn) =
d∑
i=0

xinpi(x1, ..., xn−1)

Since p 6= 0, there is a maximum index j ≤ d such that
pj(x1, ..., xn−1) 6= 0. So, we can write

p(x1, ..., xn) =

j∑
i=0

xinpi(x1, ..., xn−1)

Siddhant Chaudhary Randomized Computation

The Proof

Since p has degree d, we note that

deg pk ≤ d− k

for each 0 ≤ k ≤ j. In particular, we have deg pj ≤ d− j.
Applying the induction hypothesis pj, we see that

Pa1,...,an−1∈S[pj(a1, ..., an−1) = 0] ≤ d− j
|S|

Siddhant Chaudhary Randomized Computation

The Proof

We condition the event p(a1, ..., an−1, an) = 0 based on
two mutually exclusive and exhaustive events.

1 In the first case, p(a1, ..., an−1, an) = 0 and
pj(a1, ..., an−1) = 0. By the trivial bound,

P[p(a1, ..., an−1, an) = 0 ∧ pj(a1, ..., an−1) = 0]

≤ P[pj(a1, ..., an−1) = 0]

≤ d− j

|S|

2 In the second case, p(a1, ..., an−1, an) = 0 and
pj(a1, ..., an−1) 6= 0. Consider the one variable
polynomial

g(x) = p(a1, ..., an−1, x) =

j∑
i=0

xipi(a1, ..., an−1)

Siddhant Chaudhary Randomized Computation

The Proof

We condition the event p(a1, ..., an−1, an) = 0 based on
two mutually exclusive and exhaustive events.

1 In the first case, p(a1, ..., an−1, an) = 0 and
pj(a1, ..., an−1) = 0. By the trivial bound,

P[p(a1, ..., an−1, an) = 0 ∧ pj(a1, ..., an−1) = 0]

≤ P[pj(a1, ..., an−1) = 0]

≤ d− j

|S|

2 In the second case, p(a1, ..., an−1, an) = 0 and
pj(a1, ..., an−1) 6= 0. Consider the one variable
polynomial

g(x) = p(a1, ..., an−1, x) =

j∑
i=0

xipi(a1, ..., an−1)

Siddhant Chaudhary Randomized Computation

The Proof

We condition the event p(a1, ..., an−1, an) = 0 based on
two mutually exclusive and exhaustive events.

1 In the first case, p(a1, ..., an−1, an) = 0 and
pj(a1, ..., an−1) = 0. By the trivial bound,

P[p(a1, ..., an−1, an) = 0 ∧ pj(a1, ..., an−1) = 0]

≤ P[pj(a1, ..., an−1) = 0]

≤ d− j

|S|

2 In the second case, p(a1, ..., an−1, an) = 0 and
pj(a1, ..., an−1) 6= 0. Consider the one variable
polynomial

g(x) = p(a1, ..., an−1, x) =

j∑
i=0

xipi(a1, ..., an−1)

Siddhant Chaudhary Randomized Computation

The Proof

By the one variable bound, we have

Pan∈S[g(an) = 0] ≤ j

|S|

Summing the two probabilities above, we get

P[p(a1, ..., an) = 0] ≤ d− j
|S|

+
j

|S|
=

d

|S|

Siddhant Chaudhary Randomized Computation

The Proof

By the one variable bound, we have

Pan∈S[g(an) = 0] ≤ j

|S|

Summing the two probabilities above, we get

P[p(a1, ..., an) = 0] ≤ d− j
|S|

+
j

|S|
=

d

|S|

Siddhant Chaudhary Randomized Computation

Application to PIT

Suppose our input polynomials are f, g ∈ F [x1, ..., xn];
we need to determine whether

f − g = 0

Take S ⊆ F such that |S| = 100d.

Pick a random vector (a1, ..., an) ∈ Sn, and check the
equality

(f − g)(a1, ..., an) = 0

If the equality is true, return TRUE; otherwise return
FALSE.

By Schwarz-Zippel, we have a one-sided error bound of
d

100d
=

1

100
, which is very small!

Siddhant Chaudhary Randomized Computation

Application to PIT

Suppose our input polynomials are f, g ∈ F [x1, ..., xn];
we need to determine whether

f − g = 0

Take S ⊆ F such that |S| = 100d.

Pick a random vector (a1, ..., an) ∈ Sn, and check the
equality

(f − g)(a1, ..., an) = 0

If the equality is true, return TRUE; otherwise return
FALSE.

By Schwarz-Zippel, we have a one-sided error bound of
d

100d
=

1

100
, which is very small!

Siddhant Chaudhary Randomized Computation

Application to PIT

Suppose our input polynomials are f, g ∈ F [x1, ..., xn];
we need to determine whether

f − g = 0

Take S ⊆ F such that |S| = 100d.

Pick a random vector (a1, ..., an) ∈ Sn, and check the
equality

(f − g)(a1, ..., an) = 0

If the equality is true, return TRUE; otherwise return
FALSE.

By Schwarz-Zippel, we have a one-sided error bound of
d

100d
=

1

100
, which is very small!

Siddhant Chaudhary Randomized Computation

Application to PIT

Suppose our input polynomials are f, g ∈ F [x1, ..., xn];
we need to determine whether

f − g = 0

Take S ⊆ F such that |S| = 100d.

Pick a random vector (a1, ..., an) ∈ Sn, and check the
equality

(f − g)(a1, ..., an) = 0

If the equality is true, return TRUE; otherwise return
FALSE.

By Schwarz-Zippel, we have a one-sided error bound of
d

100d
=

1

100
, which is very small!

Siddhant Chaudhary Randomized Computation

Applying PIT to Bipartite Matching

Bipartite Graph: two teams, 1V1 matches within the
two teams.

We are interested in perfect matchings. This means
that a player from one team can play against atmost one
player from the second team, and every player from either
team has to play.

Figure: Edges in cyan form a perfect matching.

Siddhant Chaudhary Randomized Computation

Applying PIT to Bipartite Matching

Bipartite Graph: two teams, 1V1 matches within the
two teams.

We are interested in perfect matchings. This means
that a player from one team can play against atmost one
player from the second team, and every player from either
team has to play.

Figure: Edges in cyan form a perfect matching.

Siddhant Chaudhary Randomized Computation

Applying PIT to Bipartite Matching

Bipartite Graph: two teams, 1V1 matches within the
two teams.

We are interested in perfect matchings. This means
that a player from one team can play against atmost one
player from the second team, and every player from either
team has to play.

Figure: Edges in cyan form a perfect matching.

Siddhant Chaudhary Randomized Computation

Applying PIT to Bipartite Matching

Suppose the bipartition is V1 ∪ V2 with |V1| = |V2| = n.

Let AG be the symbolic adjacency matrix, defined as
follows.

AG[ij] =

{
xij , if i ∈ V1 and j ∈ V2 are connected

0 , otherwise

In the graph in the previous slide, AG is the following
matrix.

AG =


0 x12 0 0
x21 0 0 x24
0 x32 x33 0
0 0 x43 x44



Siddhant Chaudhary Randomized Computation

Applying PIT to Bipartite Matching

Suppose the bipartition is V1 ∪ V2 with |V1| = |V2| = n.

Let AG be the symbolic adjacency matrix, defined as
follows.

AG[ij] =

{
xij , if i ∈ V1 and j ∈ V2 are connected

0 , otherwise

In the graph in the previous slide, AG is the following
matrix.

AG =


0 x12 0 0
x21 0 0 x24
0 x32 x33 0
0 0 x43 x44



Siddhant Chaudhary Randomized Computation

Applying PIT to Bipartite Matching

Suppose the bipartition is V1 ∪ V2 with |V1| = |V2| = n.

Let AG be the symbolic adjacency matrix, defined as
follows.

AG[ij] =

{
xij , if i ∈ V1 and j ∈ V2 are connected

0 , otherwise

In the graph in the previous slide, AG is the following
matrix.

AG =


0 x12 0 0
x21 0 0 x24
0 x32 x33 0
0 0 x43 x44


Siddhant Chaudhary Randomized Computation

Applying PIT to Bipartite Matching

Our polynomial will be detAG, a polynomial in n2

variables.

Use the permutation expansion of the determinant.

detAG =
∑
σ∈Sn

ε(σ)A1σ(1) · · ·Anσ(n)

Claim: G has a perfect matching if and only if

detAG 6= 0

Use PIT with F = Q to get a randomized algorithm.

Siddhant Chaudhary Randomized Computation

Applying PIT to Bipartite Matching

Our polynomial will be detAG, a polynomial in n2

variables.

Use the permutation expansion of the determinant.

detAG =
∑
σ∈Sn

ε(σ)A1σ(1) · · ·Anσ(n)

Claim: G has a perfect matching if and only if

detAG 6= 0

Use PIT with F = Q to get a randomized algorithm.

Siddhant Chaudhary Randomized Computation

Applying PIT to Bipartite Matching

Our polynomial will be detAG, a polynomial in n2

variables.

Use the permutation expansion of the determinant.

detAG =
∑
σ∈Sn

ε(σ)A1σ(1) · · ·Anσ(n)

Claim: G has a perfect matching if and only if

detAG 6= 0

Use PIT with F = Q to get a randomized algorithm.

Siddhant Chaudhary Randomized Computation

Applying PIT to Bipartite Matching

Our polynomial will be detAG, a polynomial in n2

variables.

Use the permutation expansion of the determinant.

detAG =
∑
σ∈Sn

ε(σ)A1σ(1) · · ·Anσ(n)

Claim: G has a perfect matching if and only if

detAG 6= 0

Use PIT with F = Q to get a randomized algorithm.

Siddhant Chaudhary Randomized Computation

Verifying Matrix Multiplication

F is our base field (for simplicity, let F = F2). We are
given matrices A,B and C of dimension n× n.

We want to verify the equation

AB = C

If we use the usual matrix-multiplication algorithm, the
time taken is Θ(n3).

Instead, we use a randomized approach; pick a vector
r = (r1, ..., rn) ∈ F n uniformly at random. Check the
equality

(AB)r = Cr

If the equality holds, return TRUE; else return FALSE.

Siddhant Chaudhary Randomized Computation

Verifying Matrix Multiplication

F is our base field (for simplicity, let F = F2). We are
given matrices A,B and C of dimension n× n.

We want to verify the equation

AB = C

If we use the usual matrix-multiplication algorithm, the
time taken is Θ(n3).

Instead, we use a randomized approach; pick a vector
r = (r1, ..., rn) ∈ F n uniformly at random. Check the
equality

(AB)r = Cr

If the equality holds, return TRUE; else return FALSE.

Siddhant Chaudhary Randomized Computation

Verifying Matrix Multiplication

F is our base field (for simplicity, let F = F2). We are
given matrices A,B and C of dimension n× n.

We want to verify the equation

AB = C

If we use the usual matrix-multiplication algorithm, the
time taken is Θ(n3).

Instead, we use a randomized approach; pick a vector
r = (r1, ..., rn) ∈ F n uniformly at random. Check the
equality

(AB)r = Cr

If the equality holds, return TRUE; else return FALSE.

Siddhant Chaudhary Randomized Computation

Verifying Matrix Multiplication

Claim: if AB 6= C and F = F2, then

P[ABr = Cr] ≤ 1

2

If M is any non-zero n× n matrix, then it has some
non-zero entry, say M11. Also,

Mr = 0 =⇒
n∑
j=1

M1jrj = 0

which means

r1 =
−
∑n

j=2M1jrj

M11

Siddhant Chaudhary Randomized Computation

Verifying Matrix Multiplication

Claim: if AB 6= C and F = F2, then

P[ABr = Cr] ≤ 1

2

If M is any non-zero n× n matrix, then it has some
non-zero entry, say M11. Also,

Mr = 0 =⇒
n∑
j=1

M1jrj = 0

which means

r1 =
−
∑n

j=2M1jrj

M11

Siddhant Chaudhary Randomized Computation

Verifying Matrix Multiplication

Now condition on the values (r2, ..., rn), i.e fix (r2, ..., rn).
Verify now that the last equation holds with probability

less than
1

2
.

Summing up all the conditional probabilities, we obtain

P[ABr = Cr] ≤ 1

2

So our algorithm has a one-sided error less than 1
2
; still

not very nice. How to fix this?

Repeat the algorithm t times independently, to make the
error probability less than

(
1
2

)t
. t = 100 will give a good

enough bound.

Siddhant Chaudhary Randomized Computation

Verifying Matrix Multiplication

Now condition on the values (r2, ..., rn), i.e fix (r2, ..., rn).
Verify now that the last equation holds with probability

less than
1

2
.

Summing up all the conditional probabilities, we obtain

P[ABr = Cr] ≤ 1

2

So our algorithm has a one-sided error less than 1
2
; still

not very nice. How to fix this?

Repeat the algorithm t times independently, to make the
error probability less than

(
1
2

)t
. t = 100 will give a good

enough bound.

Siddhant Chaudhary Randomized Computation

Verifying Matrix Multiplication

Now condition on the values (r2, ..., rn), i.e fix (r2, ..., rn).
Verify now that the last equation holds with probability

less than
1

2
.

Summing up all the conditional probabilities, we obtain

P[ABr = Cr] ≤ 1

2

So our algorithm has a one-sided error less than 1
2
; still

not very nice. How to fix this?

Repeat the algorithm t times independently, to make the
error probability less than

(
1
2

)t
. t = 100 will give a good

enough bound.

Siddhant Chaudhary Randomized Computation

Verifying Matrix Multiplication

Now condition on the values (r2, ..., rn), i.e fix (r2, ..., rn).
Verify now that the last equation holds with probability

less than
1

2
.

Summing up all the conditional probabilities, we obtain

P[ABr = Cr] ≤ 1

2

So our algorithm has a one-sided error less than 1
2
; still

not very nice. How to fix this?

Repeat the algorithm t times independently, to make the
error probability less than

(
1
2

)t
. t = 100 will give a good

enough bound.

Siddhant Chaudhary Randomized Computation

Randomization is powerful

Used in universal and perfect hashing, a powerful
technique for storing and querying large amounts of data
in average O(1) time.

Primality Tests, like Miller-Rabin.

Get as accurate as you want! One-sided errors can be
made as small as possible, by introducing a parameter.
This is just the idea of independence of events.

Hope you enjoyed the discussion!

Siddhant Chaudhary Randomized Computation

Randomization is powerful

Used in universal and perfect hashing, a powerful
technique for storing and querying large amounts of data
in average O(1) time.

Primality Tests, like Miller-Rabin.

Get as accurate as you want! One-sided errors can be
made as small as possible, by introducing a parameter.
This is just the idea of independence of events.

Hope you enjoyed the discussion!

Siddhant Chaudhary Randomized Computation

Randomization is powerful

Used in universal and perfect hashing, a powerful
technique for storing and querying large amounts of data
in average O(1) time.

Primality Tests, like Miller-Rabin.

Get as accurate as you want! One-sided errors can be
made as small as possible, by introducing a parameter.
This is just the idea of independence of events.

Hope you enjoyed the discussion!

Siddhant Chaudhary Randomized Computation

Randomization is powerful

Used in universal and perfect hashing, a powerful
technique for storing and querying large amounts of data
in average O(1) time.

Primality Tests, like Miller-Rabin.

Get as accurate as you want! One-sided errors can be
made as small as possible, by introducing a parameter.
This is just the idea of independence of events.

Hope you enjoyed the discussion!

Siddhant Chaudhary Randomized Computation

