Randomized Computation

Siddhant Chaudhary

PROMYS 2021

Siddhant Chaudhary Randomized Computation

Flip Coins!

Randomization is the technique of using outcomes of experiments in designing useful algorithms.

Flip Coins!

- Randomization is the technique of using outcomes of experiments in designing useful algorithms.
- An example could be the generation of random numbers (technically, pseudorandom number generation) in an algorithm.

Flip Coins!

- Randomization is the technique of using outcomes of experiments in designing useful algorithms.
- An example could be the generation of random numbers (technically, pseudorandom number generation) in an algorithm.
- Mathematically defined as languages recognized by Probabilistic Turing Machines with small error bound. The class of languages is denoted BPP (Trivially P ⊆ BPP. Converse is an open problem).

• You are working in the ring $F[x_1, ..., x_n]$, where F is a field. Often $F = \mathbb{Q}$.

- You are working in the ring $F[x_1, ..., x_n]$, where F is a field. Often $F = \mathbb{Q}$.
- $f(x_1, ..., x_n), g(x_1, ..., x_n) \in F[x_1, ..., x_n].$

• You are working in the ring $F[x_1, ..., x_n]$, where F is a field. Often $F = \mathbb{Q}$.

•
$$f(x_1, ..., x_n), g(x_1, ..., x_n) \in F[x_1, ..., x_n].$$

Need to determine whether

$$f = g$$

which is the same as determining whether

$$f - g = 0$$

Example

In some scenarios, either f or g might be given in terms of linear factors. For instance, we might need to verify the following.

$$\prod_{i=1}^{6} (x-i) \stackrel{?}{=} x^6 - 7x^3 + 25$$

Expanding the product is not a good idea! If the 6 is replaced by a large constant, this becomes difficult.

A Useful Tool

Proposition

(Schwartz-Zippel) Let $p(x_1, ..., x_n)$ be any non-zero element of $F[x_1, ..., x_n]$ of degree d. Let $S \subseteq F$ be any finite set. If $a_1, ..., a_n$ are picked uniformly at random from S, then

$$\mathbf{P}[p(a_1, \dots, a_n) = 0] \le \frac{d}{|S|}$$

• By induction on the number of variables *n* ; the base case of one variable is easy.

- By induction on the number of variables *n* ; the base case of one variable is easy.
- Assume the claim holds for all polynomials with atmost n-1 variables.

- By induction on the number of variables *n* ; the base case of one variable is easy.
- Assume the claim holds for all polynomials with atmost n-1 variables.
- Regard p as a single variable polynomial with coefficients in $F[x_1, ..., x_{n-1}]$. Formally, we are using

$$F[x_1,...,x_n] \cong F[x_1,...,x_{n-1}][x_n]$$

• So we write

$$p(x_1, ..., x_n) = \sum_{i=0}^d x_n^i p_i(x_1, ..., x_{n-1})$$

・ロト ・日 ・ ・ ヨ ・ ・

æ

æ

So we write

$$p(x_1, ..., x_n) = \sum_{i=0}^d x_n^i p_i(x_1, ..., x_{n-1})$$

• Since $p \neq 0$, there is a maximum index $j \leq d$ such that $p_j(x_1, ..., x_{n-1}) \neq 0$. So, we can write

$$p(x_1, ..., x_n) = \sum_{i=0}^{j} x_n^i p_i(x_1, ..., x_{n-1})$$

• Since p has degree d, we note that

$$\deg p_k \le d-k$$

for each $0 \le k \le j$. In particular, we have $\deg p_j \le d-j$. Applying the induction hypothesis p_j , we see that

$$\mathbf{P}_{a_1,...,a_{n-1}\in S}[p_j(a_1,...,a_{n-1})=0] \le \frac{d-j}{|S|}$$

• We condition the event $p(a_1, ..., a_{n-1}, a_n) = 0$ based on two mutually exclusive and exhaustive events.

• We condition the event $p(a_1, ..., a_{n-1}, a_n) = 0$ based on two mutually exclusive and exhaustive events.

In the first case,
$$p(a_1, ..., a_{n-1}, a_n) = 0$$
 and
 $p_j(a_1, ..., a_{n-1}) = 0$. By the trivial bound,
 $\mathbf{P}[p(a_1, ..., a_{n-1}, a_n) = 0 \land p_j(a_1, ..., a_{n-1}) = 0]$
 $\leq \mathbf{P}[p_j(a_1, ..., a_{n-1}) = 0]$
 $\leq \frac{d-j}{|S|}$

• We condition the event $p(a_1, ..., a_{n-1}, a_n) = 0$ based on two mutually exclusive and exhaustive events.

In the first case,
$$p(a_1, ..., a_{n-1}, a_n) = 0$$
 and
 $p_j(a_1, ..., a_{n-1}) = 0$. By the trivial bound,
 $\mathbf{P}[p(a_1, ..., a_{n-1}, a_n) = 0 \land p_j(a_1, ..., a_{n-1}) = 0]$
 $\leq \mathbf{P}[p_j(a_1, ..., a_{n-1}) = 0]$
 $\leq \frac{d-j}{|S|}$

In the second case, $p(a_1, ..., a_{n-1}, a_n) = 0$ and $p_j(a_1, ..., a_{n-1}) \neq 0$. Consider the one variable polynomial

$$g(x) = p(a_1, ..., a_{n-1}, x) = \sum_{i=0}^{j} x^i p_i(a_1, ..., a_{n-1})$$

• By the one variable bound, we have

$$\mathbf{P}_{a_n \in S}[g(a_n) = 0] \le \frac{j}{|S|}$$

白マイヨマト

3

• By the one variable bound, we have

$$\mathbf{P}_{a_n \in S}[g(a_n) = 0] \le \frac{j}{|S|}$$

• Summing the two probabilities above, we get

$$\mathbf{P}[p(a_1, ..., a_n) = 0] \le \frac{d-j}{|S|} + \frac{j}{|S|} = \frac{d}{|S|}$$

• Suppose our input polynomials are $f, g \in F[x_1, ..., x_n]$; we need to determine whether

$$f - g = 0$$

Application to PIT

• Suppose our input polynomials are $f, g \in F[x_1, ..., x_n]$; we need to determine whether

$$f - g = 0$$

• Take $S \subseteq F$ such that |S| = 100d.

• Suppose our input polynomials are $f, g \in F[x_1, ..., x_n]$; we need to determine whether

$$f - g = 0$$

- Take $S \subseteq F$ such that |S| = 100d.
- Pick a random vector $(a_1, ..., a_n) \in S^n$, and check the equality

$$(f-g)(a_1, ..., a_n) = 0$$

If the equality is true, return TRUE; otherwise return FALSE.

• Suppose our input polynomials are $f, g \in F[x_1, ..., x_n]$; we need to determine whether

$$f - g = 0$$

- Take $S \subseteq F$ such that |S| = 100d.
- Pick a random vector $(a_1, ..., a_n) \in S^n$, and check the equality

$$(f-g)(a_1, ..., a_n) = 0$$

If the equality is true, return TRUE; otherwise return FALSE.

• By **Schwarz-Zippel**, we have a one-sided error bound of $\frac{d}{100d} = \frac{1}{100}$, which is very small!

• **Bipartite Graph**: two teams, 1V1 matches within the two teams.

- **Bipartite Graph**: two teams, 1V1 matches within the two teams.
- We are interested in **perfect matchings**. This means that a player from one team can play against *atmost one* player from the second team, and *every* player from either team has to play.

- **Bipartite Graph**: two teams, 1V1 matches within the two teams.
- We are interested in **perfect matchings**. This means that a player from one team can play against *atmost one* player from the second team, and *every* player from either team has to play.

Figure: Edges in cyan form a perfect matching.

• Suppose the bipartition is $V_1 \cup V_2$ with $|V_1| = |V_2| = n$.

→ < Ξ → <</p>

- Suppose the bipartition is $V_1 \cup V_2$ with $|V_1| = |V_2| = n$.
- Let A_G be the **symbolic adjacency matrix**, defined as follows.

$$A_G[ij] = \begin{cases} x_{ij} & , & \text{if } i \in V_1 \text{ and } j \in V_2 \text{ are connected} \\ 0 & , & \text{otherwise} \end{cases}$$

- Suppose the bipartition is $V_1 \cup V_2$ with $|V_1| = |V_2| = n$.
- Let A_G be the **symbolic adjacency matrix**, defined as follows.

$$A_G[ij] = \begin{cases} x_{ij} & , & \text{if } i \in V_1 \text{ and } j \in V_2 \text{ are connected} \\ 0 & , & \text{otherwise} \end{cases}$$

• In the graph in the previous slide, A_G is the following matrix.

$$A_G = \begin{bmatrix} 0 & x_{12} & 0 & 0 \\ x_{21} & 0 & 0 & x_{24} \\ 0 & x_{32} & x_{33} & 0 \\ 0 & 0 & x_{43} & x_{44} \end{bmatrix}$$

• Our polynomial will be $\det A_G$, a polynomial in n^2 variables.

- Our polynomial will be $\det A_G$, a polynomial in n^2 variables.
- Use the permutation expansion of the determinant.

$$\det A_G = \sum_{\sigma \in S_n} \epsilon(\sigma) A_{1\sigma(1)} \cdots A_{n\sigma(n)}$$

- Our polynomial will be $\det A_G$, a polynomial in n^2 variables.
- Use the permutation expansion of the determinant.

$$\det A_G = \sum_{\sigma \in S_n} \epsilon(\sigma) A_{1\sigma(1)} \cdots A_{n\sigma(n)}$$

• Claim: G has a perfect matching if and only if

$$\det A_G \neq 0$$

- Our polynomial will be $\det A_G$, a polynomial in n^2 variables.
- Use the permutation expansion of the determinant.

$$\det A_G = \sum_{\sigma \in S_n} \epsilon(\sigma) A_{1\sigma(1)} \cdots A_{n\sigma(n)}$$

 \bullet Claim: G has a perfect matching if and only if

$$\det A_G \neq 0$$

• Use PIT with $F = \mathbb{Q}$ to get a randomized algorithm.

F is our base field (for simplicity, let F = 𝔽₂). We are given matrices A, B and C of dimension n × n.

- F is our base field (for simplicity, let F = 𝔽₂). We are given matrices A, B and C of dimension n × n.
- We want to verify the equation

$$AB = C$$

If we use the usual matrix-multiplication algorithm, the time taken is $\Theta(n^3).$

- F is our base field (for simplicity, let F = 𝔽₂). We are given matrices A, B and C of dimension n × n.
- We want to verify the equation

$$AB = C$$

If we use the usual matrix-multiplication algorithm, the time taken is $\Theta(n^3).$

• Instead, we use a randomized approach; pick a vector $\boldsymbol{r}=(r_1,...,r_n)\in F^n$ uniformly at random. Check the equality

$$(AB)\boldsymbol{r} = C\boldsymbol{r}$$

If the equality holds, return TRUE; else return FALSE.

• Claim: if $AB \neq C$ and $F = \mathbb{F}_2$, then

$$\mathbf{P}[AB\mathbf{r} = C\mathbf{r}] \le \frac{1}{2}$$

• Claim: if $AB \neq C$ and $F = \mathbb{F}_2$, then

$$\mathbf{P}[AB\mathbf{r} = C\mathbf{r}] \le \frac{1}{2}$$

• If M is any non-zero $n \times n$ matrix, then it has some non-zero entry, say M_{11} . Also,

$$M\boldsymbol{r} = 0 \implies \sum_{j=1}^{n} M_{1j}r_j = 0$$

which means

$$r_1 = \frac{-\sum_{j=2}^n M_{1j} r_j}{M_{11}}$$

• Now condition on the values $(r_2, ..., r_n)$, i.e fix $(r_2, ..., r_n)$. Verify now that the last equation holds with probability less than $\frac{1}{2}$.

- Now condition on the values $(r_2, ..., r_n)$, i.e fix $(r_2, ..., r_n)$. Verify now that the last equation holds with probability less than $\frac{1}{2}$.
- Summing up all the conditional probabilities, we obtain

$$\mathbf{P}[AB\boldsymbol{r}=C\boldsymbol{r}] \le \frac{1}{2}$$

- Now condition on the values (r₂, ..., r_n), i.e fix (r₂, ..., r_n). Verify now that the last equation holds with probability less than ¹/₂.
- Summing up all the conditional probabilities, we obtain

$$\mathbf{P}[AB\boldsymbol{r} = C\boldsymbol{r}] \le \frac{1}{2}$$

 So our algorithm has a one-sided error less than ¹/₂; still not very nice. How to fix this?

- Now condition on the values $(r_2, ..., r_n)$, i.e fix $(r_2, ..., r_n)$. Verify now that the last equation holds with probability less than $\frac{1}{2}$.
- Summing up all the conditional probabilities, we obtain

$$\mathbf{P}[AB\boldsymbol{r} = C\boldsymbol{r}] \le \frac{1}{2}$$

- So our algorithm has a one-sided error less than ¹/₂; still not very nice. How to fix this?
- Repeat the algorithm t times independently, to make the error probability less than $\left(\frac{1}{2}\right)^t$. t = 100 will give a good enough bound.

• Used in **universal and perfect hashing**, a powerful technique for storing and querying large amounts of data in average O(1) time.

- Used in **universal and perfect hashing**, a powerful technique for storing and querying large amounts of data in average O(1) time.
- Primality Tests, like Miller-Rabin.

- Used in **universal and perfect hashing**, a powerful technique for storing and querying large amounts of data in average O(1) time.
- Primality Tests, like Miller-Rabin.
- Get as accurate as you want! One-sided errors can be made as small as possible, by introducing a parameter. This is just the idea of independence of events.

- Used in **universal and perfect hashing**, a powerful technique for storing and querying large amounts of data in average O(1) time.
- Primality Tests, like Miller-Rabin.
- Get as accurate as you want! One-sided errors can be made as small as possible, by introducing a parameter. This is just the idea of independence of events.
- Hope you enjoyed the discussion!