
Randomized Computation

Siddhant Chaudhary

5 August 2021

1 Randomization: A brief introduction

Randomization is the technique of using outcomes of experiments in designing algorithms. It could
be as simple as generating random numbers in a given range and using them in some particular
fashion. Let us now see how complexity theorists deal with randomization.

Definition 1.1. Let T : N → N and let L ⊆ {0, 1}∗. We say that a probabilistic Turing Machine
M decides L in time T (n), if for every x ∈ {0, 1}∗, M halts in T (|x|) steps regardless of its random
choices, and

P[M(x) = L(x)] ≥ 2

3
where we say L(x) = 1 if x ∈ L, and 0 otherwise. The set BPTIME(T (n)) denotes the class of
languages decided by probabilistic Turing Machines in O(T (n)) time, and we define

BPP =
⋃
c

BPTIME(nc)

For this discussion, we don’t need to dive deeply into proving properties of BPP; our main
focus will be in understanding some of the general techniques used in randomization. However. the
following fact is immediate, and will be left as an exercise for the reader.

Proposition 1.2. P ⊆ BPP.

Remark 1.3. If you’re not familiar with complexity classes: P is the class of problems (technically,
languages) solvable by deterministic polynomial time algorithms (try Googling these terms; the
definitions are not very hard, but need the notion of Turing Machines). So all this proposition
is stating is that any deterministic polynomial time algorithm you can think of is a randomized
algorithm; one in which no randomization is being used at all.

Remark 1.4. The question whether the inclusion BPP ⊆ P holds is still an open problem. Roughly,
this question is asking whether every randomized algorithm can be converted to a deterministic
polynomial time algorithm. Converting any randomized algorithm to a deterministic exponential
time algorithm is possible; formally, BPP ⊆ EXP. Can you prove this?

2 Polynomial Identity Testing

2.1 Problem Description

Let F be a field. Most often, F is one of Q,R,C, or it is a finite field. Let f, g ∈ F [x1, ..., xn]. We
are interested in determining the equality

f = g

1

which is the same as checking whether
f − g = 0

is true or not. Ofcourse, the most naive way to check this is by checking whether all of the coefficients
of f − g are zero or not. However, as the following example, shows, this is not the best way to go
complexity-wise.

Example 2.1. Suppose we want to verify something like

6∏
i=1

(x− i) ?
= x6 − 7x3 + 25

Here, expanding the product is not a good idea. In fact, as an exercise, try to show that the number
of multiplications you need to do to expand the product grows exponentially as the number of factors
increases.

2.2 A useful lemma

We will now state and prove the tool we will use to solve the PIT problem.

Theorem 2.2 (Schwartz-Zippel Lemma). Let p(x1, ..., xn) be any non-zero element of F [x1, ..., xn]
of degree d. Let S ⊆ F be any finite set. If a1, ..., an are independently picked uniformly at random
from S, then

P[p(a1, ..., an) = 0] ≤ d

|S|

Proof. We prove this by induction on the number of variables n. For the base case, suppose n = 1,
i.e we are working in the ring F [x]. From PROMYS number theory, we know that any polynomial
of degree d over a field F has atmost d roots in F . The base case is not obvious from this.

Now suppose the claim holds for all polynomials with atmost n− 1 variables. We regard p as a
single variable polynomial with coefficients in F [x1, ..., xn−1]. Formally, we are using the isomorphism

F [x1, ..., xn] ∼= F [x1, ..., xn−1][xn]

(If you wish, you may prove this; the proof isn’t very hard). So, we write

p(x1, ..., xn) =

d∑
i=0

xinpi(x1, ..., xn−1)

where each pi ∈ F [x1, ..., xn−1]. Since p 6= 0, there is a maximum index j ≤ d such that

pj(x1, ..., xn−1) 6= 0

So, just to make the leading coefficient non-zero, we can write

p(x1, ..., xn) =

j∑
i=0

xinpi(x1, ..., xn−1)

Since p has degree d, we note that
deg pk ≤ d− k

2

for each 0 ≤ k ≤ j. In particular, we have deg pj ≤ d− j. Applying the induction hypothesis to pj
(which has n− 1 variables), we see that

Pa1,...,an−1∈S [pj(a1, ..., an−1) = 0] ≤ d− j
|S|

We now condition the event p(a1, ..., an−1, an) = 0 based on two mutually exclusive and exhaustive
events (see definitions of this if you don’t know what this means. Also, see Exercise 2.4 below).

1. In the first case, p(a1, ..., an−1, an) = 0 and pj(a1, ..., an−1) = 0. By the trivial bound,

P[p(a1, ..., an−1) = 0 ∧ pj(a1, ..., an−1) = 0] ≤ P[pj(a1, ..., an−1) = 0]

≤ d− j
|S|

2. In the second case, p(a1, ..., an−1, an) = 0 and pj(a1, ..., an−1) 6= 0. For fixed a1, ..., an−1 ∈ F ,
consider the one variable polynomial

g(x) = p(a1, ..., an−1, an) =

j∑
i=0

xipi(a1, ..., an−1)

Clearly, g ∈ F [x], and g is non-zero. So by the one variable bound (and keeping in mind that
a1, ..., an−1 are fixed), we see that

Pan∈S [g(an) = 0] ≤ j

|S|

Now, conditioning on the possible values of a1, ..., an−1 (see Exercise 2.4 below), we get that

P[p(a1, ..., an−1) = 0 ∧ pj(a1, ..., an−1) 6= 0] ≤ j

|S|

Summing the probabilities of the two disjoint events above, we see that

P[p(a1, ..., an) = 0] ≤ d− j
|S|

+
j

|S|
=

d

|S|

and this completes the induction proof.

Exercise 2.3. For events X,Y , define the conditional probability P(X|Y) as

P(X|Y) =
P(X ∩ Y)

P(Y)

Intuitively, this is the probability of the event X provided event Y has occurred. Suppose E1, ..., En
are mutually exclusive and exhaustive events for a sample space. Let X be any event. Show that

P(X) =

n∑
i=1

P(X|Ei)P(Ei) =

n∑
i=1

P(X ∩ Ei)

3

Exercise 2.4. Suppose E1, ..., En are mutually exclusive and exhaustive events. Let X be any event
such that

P(X|E1) = P(X|E2) = · · · = P(X|En)

Show that
P(X) = P(X|E1) = P(X|E2) = · · · = P(X|En)

So, to compute P(X), we can just assume that event Ei has occurred, for any 1 ≤ i ≤ n. Can you
now see how a variant of this fact has been used in the proof above? In the proof, we are working
in inequalities rather than equalities, but the basic idea is the same.

2.3 A randomized algorithm for PIT

We now give a randomized algorithm for PIT using the lemma we proved above. The algorithm is
as follows.

1. Suppose the input polynomials are f, g ∈ F [x1, ..., xn]. We need to check

f − g = 0

2. Let d = deg(f − g). Take S ⊆ F such that |S| = 100d.

3. Pick a vector (a1, ..., an) ∈ Sn uniformly at random, and check the equality

(f − g)(a1, ..., an) = 0

4. If the equality holds, return true; else return false.

Exercise 2.5. Prove that this algorithm has a one-sided error with an upper bound of 1/100, which
is good enough for us. So we now have our algorithm!

Remark 2.6. A one-sided error means that the algorithm works with no error in all cases which are
actually true, and work with some error in cases which are false.

3 Applying PIT to Bipartite Matching

3.1 Perfect Matchings

In this section, I’m assuming you are familiar with graphs; if not, just Google the definitions. They’re
not hard. I’m also assuming you are familiar with bipartite graphs. Look at their definitions too if
you need to.

Definition 3.1. Let G = (V,E) be a graph. A matching is a subset M ⊆ E of edges such that the
following holds: for each vertex x ∈ V , there is atmost one edge e ∈ M incident on x. A perfect
matching is a matching in which each vertex x ∈ V is incident to atleast one edge e ∈ M . In this
section, we will be interested in perfect matchings of bipartite graphs.

Having these definitions in mind, consider the following scenario: suppose G = (V,E) is a bipartite
graph. Also, suppose the bipartition is V1 ∪ V2, with |V1| = |V2| = n. Let AG be the symbolic
adjacency matrix of the graph. AG is defined as follows.

AG[ij] =

{
xij , if i ∈ V1 and j ∈ V2 are connected

0 , otherwise

4

Note that here xij are formal symbols, and they should be treated as so. The polynomial in which
we’ll be interested is detAG, i.e the determinant of AG. Clearly, detAG is a polynomial in atmost
n2 variables. Also, we’ll be using the permutation expansion of the determinant :

detAG =
∑
σ∈Sn

ε(σ)A1σ(1) · · ·Anσ(n)

(If you aren’t familiar with this, just read this on Wikipedia. Knowing where this formula comes
from is not important for now). Here Sn is the group of permutations of n numbers, and ε(σ) is the
sign of the permutation σ.

Proposition 3.2. The graph G above has a perfect matching if and only if detAG 6= 0. Here detAG
is a polynomial, and so we are working with polynomial equalities.

Exercise 3.3. Prove the above claim. See how perfect matchings and permutations are related
here. This is not very difficult; this exercise only checks whether you’ve understood the problem
statement, and whether you’re comfortable with polynomials.

3.2 The Algorithm

Using all of our observations, we now have the following algorithm at our disposal.

1. Suppose our input graph is G = (V,E). As before, our assumption is that V = V1 ∪ V2 is a
bipartition with |V1| = |V2| = n.

2. Compute AG, and detAG. Use standard algorithms to compute the determinant (Note: here
we are compuing detAG as a polynomial).

3. Use PIT with F = Q and check whether detAG = 0. If equality holds, return false; else return
true.

Exercise 3.4. Show that this algorithm has a one-sided error. Use Proposition 3.2.

4 Verifying Matrix Multiplication

4.1 Problem Statement

Suppose F is our base field. Throughout this discussion, we assume F = F2, although any finite
field will be fine. We are given n × n matrices A,B and C over F , and we want to check whether
the equality

AB = C

holds. If we use the usual matrix multiplication algorithm, we will need Θ(n3) time; although this
is not bad, we can do better with randomization.

4.2 The Algorithm

Here is the algorithm that we’ll use.

1. Pick any vector r = (r1, ..., rn) ∈ Fn uniformly at random.

5

2. Check the equality
(AB)r = Cr

3. If the equality holds, return true; else return false.

If you wish, you can analyze this algorithm through the following exercises.

Proposition 4.1. If AB 6= C and F = F2, then

P[ABr = Cr] ≤ 1

2

where the probability is being taken over the choice of r ∈ Fn.

Exercise 4.2. Let M be any non-zero matrix. Show that if r ∈ Fn is chosen uniformly at random,
then

P[Mr = 0] ≤ 1

2

where again F = F2. Hint: since M is non-zero, it has a non-zero entry, say M11 (without loss of
generality. Question: why can we assume this without loss of generality?). Now,

Mr = 0 =⇒
n∑
j=1

M1jrj = 0

Rewrite the last equation, by separating out r1. Using something similar to Exercise 2.4, condition
on the values of r2, ..., rn. Get the bound.

Exercise 4.3. Prove Proposition 4.1.

Exercise 4.4. Show that the above algorithm has one-sided error. In Exercise 4.2, we’ve shown
that the error bound is 1/2, which is not great. Show that, by repeating the algorithm t times, we
can reduce the error bound to (1/2)t. Can we do something similar for two-sided errors?

5 Other Applications

Randomization is a powerful technique. Other notable applications are given below.

1. Randomization is used in universal hashing. Hashing in general is a technique used to store
and query data. There are certain families of hash functions, called universal hash families,
which are useful because they reduce the collision probability. Moreover, such a family can be
applied to any set of keys.

2. Many primality tests use randomization. The most notable one is the Miller-Rabin Primality
Test. If you wish, you can read about it on the internet.

6

	Randomization: A brief introduction
	Polynomial Identity Testing
	Problem Description
	A useful lemma
	A randomized algorithm for PIT

	Applying PIT to Bipartite Matching
	Perfect Matchings
	The Algorithm

	Verifying Matrix Multiplication
	Problem Statement
	The Algorithm

	Other Applications

