
TFML Report

Siddhant Chaudhary

December 2021
Abstract

This is the report for a reading project completed during a Machine Learning
course in CMI. The title of the paper was Adam: A method for stochastic optimization.

Contents

1 Introduction 1
1.1 Overview . 1

1.1.1 Moving Averages. 1
1.1.2 Momentum and adaptive step sizes. 2

1.2 Algorithm and Pseudocode . 2
1.2.1 Algorithm Description. 2
1.2.2 Bias Corrections. 2

2 Convergence Guarantees and Experiments 3
2.1 Bound on Regret . 3

2.1.1 The OCO setting. 3
2.2 Experiment: A comparison with AdaGrad 4

2.2.1 Overview of the experiment. 4
2.2.2 Experiment on MNIST. 4
2.2.3 Experiment on Fashion MNIST. 5
2.2.4 Code. 5

1. Introduction

1.1 Overview

Adam, which stands for Adaptive Moment Estimation, is a technique for optimizing
stochastic gradient descent. It is one of the more efficient methods to optimize SGD,
and is also readily available in most ML packages. In practice, it has been observed that
Adam works well and is comparatively better than other optimization techniques like Ada-
Grad and gradient descent with momentum. Let us now quickly review the mathematical
ideas used in Adam.

1.1.1 Moving Averages. Given a sequence {an}n∈N, one can define the so called mov-
ing average of the sequence. A decaying parameter β > 0 is picked, and the sequence
{An}n∈N is defined as follows.

A1 = a1

An = βAn−1 + (1− β)an

December 2021

1 Introduction

This is also called the exponential moving average, because if we unfold this recurrence,
then it can easily be seen that the older terms in the sequences are weighted by powers
of β. Adam uses moving averages of the first and second moments of the sequence of
gradients obtained at consecutive time steps, which will be made clear in further sections.

1.1.2 Momentum and adaptive step sizes. Adam combines the techniques of mo-
mentum (another method to optimize gradient descent) and adaptive weights, i.e Adam
uses a different step size for each learning parameter. So in some sense, Adam adaptively
chooses a good increment for each parameter it wants to learn. This makes Adam flexible
to cases in which the gradients are sparse, i.e cases when the coordinates of the gradient
vectors are close to zero.

1.2 Algorithm and Pseudocode

1.2.1 Algorithm Description. As input, Adam takes four parameters: α > 0 (a step-
size parameter), two decay parameters β1, β2 ∈ [0, 1), and a parameter ϵ > 0 (which
is used to prevent division by zero errors). Good default settings for many tested ML
problems are α = 0.001, β1 = 0.9, β = 0.999 and ϵ = 10−8.
At each time step t, we are given an objective function ft(θ). Here θ lies in the parameter
space. One should think of the fts as realizations of some stochastic objective function
f(θ) at various time steps. For example, in minibatch gradient descent, few data points
are picked randomly, and a corresponding objective is determined out of the data points.
Our goal is to output some value of θ which minimizes the objective f(θ). We assume that
ft is differentiable, and we use the notation gt to denote the gradient of ft, i.e gt = ft(θt−1)
(where θt−1 is our choice at the previous time step).
The algorithm maintains four estimates: mt, m̂t, vt and v̂t. Initially all of these are set
to 0. mt is the moving average of the sequence {gt} of gradients till time step t, and
similarly vt is the moving average of the sequence of second moments

{
g2t
}

till time step
t. Here g2t is the coordinate wise product of gt with itself. The estimates m̂t and v̂t are
bias-corrected estimates of mt and vt; the bias emerges from the fact that we initialize
mt and vt to 0. The algorithm then increments the parameter θt as follows.

θt ← θt−1 − α · m̂t√
vt + ϵ

At the end, the resulting parameter θT+1 is returned, where T denotes the number of
time steps the algorithm is run for. For the pseudocode, refer to Algorithm 1.

1.2.2 Bias Corrections. As mentioned in the previous discussion, initializing the vari-
ables mt, vt to zero leads to terms which are biased towards zero. Now we will see how
to correct these terms and obtain the biased corrected terms m̂t and v̂t.
Suppose g1, ..., gt are the gradients obtained at the time steps. For simplicity, we can
assume that the gradients are stationary, i.e they are obtained from the same distribution
at each time step. So, for any 1 ≤ i, j ≤ t, we have

E [gi] = E [gj](1)

For instance, the above assumption is true if one is implementing SGD by sampling
a data point uniformly at random from the dataset. Expanding the recurrence vt =

2

2 Convergence Guarantees and Experiments

Algorithm 1 Adam
1: Input: α and β1, β2 ∈ [0, 1).
2: Required: f(θ) (objective) and θ0 (initial parameter)
3: m0 ← 0
4: v0 ← 0
5: t← 0
6: while (some convergence critrion on θt) do
7: t← t+ 1
8: gt ← ∇θft(θt−1)
9: mt ← β1mt−1 + (1− β1)gt

10: vt ← β2vt−1 + (1− β2)g
2
t

11: m̂t ← mt/(1− βt
1)

12: v̂t ← vt/(1− βt
2)

13: θt ← θt−1 − α · m̂t/(
√
v̂t + ϵ)

14: end while
15: return θt

β2vt−1 + (1− β2)g
2
t with the initial condition v0 = 0, we obtain the following formula for

vt.

vt = (1− β2)

t∑
i=1

βt−i
2 g2i

Ideally we want E [vt] = E
[
g2t
]
, which is the true expectation of the second moment.

Taking expectations on both sides of the above equation and using (1), we obtain the
following.

E [vt] = (1− β2)
t∑

i=1

βt−i
2 E

[
g2i
]

= E [gt]
2 (1− β2)

t∑
i=1

βt−i
2

= E
[
g2t
]
(1− βt

2)

So, we see that dividing out by (1− βt
2) ensures that E [v̂t] = E

[
g2t
]
, and hence the term

v̂t is free of bias. A similar analysis works for mt and m̂t as well. Infact, even if condition
(1) is not true, the above analysis is approximately correct, as the values of β1 and β2 are
typically chosen so that weights assigned to gradients too far in the past are small.

2. Convergence Guarantees and Experiments

2.1 Bound on Regret

2.1.1 The OCO setting. The authors of the paper have analyzed Adam using the
Online Convex Optimization (OCO) framework. In this framework, we are given an
arbitrary sequence of convex cost functions f1(θ), f2(θ),..., fT (θ). At each time step t,
the goal is to pick a parameter θt from a convex domain in order to minimize the regret
R(T), which is defined as follows.

R(T) :=
T∑
t=1

[ft(θt)− ft(θ
∗)]

3

2 Convergence Guarantees and Experiments

Above, θ∗ = argminθ∈X
∑T

t=1 ft(θ), where X is the convex domain in question. The
authors have shown that Adam has O(

√
T) regret bound, which is comparable to the

usual regret bounds for OCO algorithms.
To be more specific, the authors have considered the following conditions.

(1) Bounded gradients: for all t and θ ∈ X, we assume that ||∇ft(θ)||2 ≤ G and
||∇ft(θ)||∞ ≤ G∞.

(2) Bounded diameter: for all 1 ≤ i, j ≤ T , we assume that ||θi − θj ||2 ≤ D and
||θi − θj ||∞ ≤ D∞. This will be the case if the diameter of the set X w.r.t the ||·||2
and ||·||∞ norms is upper bounded.

(3) β1, β2 ∈ [0, 1) satisfy β2
1 <
√
β2. Here β1, β2 are the decay parameters used in Adam.

(4) The step sizes are αt =
α√
t
.

(5) Instead of using the fixed parameter β1 at all time steps, the parameter β1,t =
β1 · λt−1 is used at time t, where λ ∈ (0, 1). In simple words, the first moment
averaging coefficient decays exponentially with time.

If the above conditions hold, the authors have shown that Adam has O(dG∞
√
T) regret

bound, where d is the dimension of the space where the data points are. In fact, the
authors have shown the following stronger bound on regret.

R(T) ≤ D2

2α(1− β1)

d∑
t=1

√
T v̂T,i +

α(1 + β1)G∞

(1− β1)
√
1− β2(1− γ)2

d∑
i=1

||g1:T , i||2 +
d∑

i=1

D2
∞G∞

√
1− β2

2α(1− β1)(1− λ)2

Above, v̂T,i denotes the ith coordinate of v̂T , and for each 1 ≤ i ≤ d, the vector g1:T ∈ RT

is defined to be the T -dimensional vector containing the ith coordinates of all the gradients
till time T , i.e

g1:T,i = (g1,i, g2,i, · · · , gT,i)

It can be shown that the RHS of the above bound is O(dG∞
√
T). Moreover, in case of

sparse gradients, the above bound is much stronger than O(dG∞
√
T).

2.2 Experiment: A comparison with AdaGrad

2.2.1 Overview of the experiment. We conducted a simple test in TensorFlow to
compare the performance of Adam and AdaGrad in terms of the rate of convergence in
training accuracies on the MNIST and the Fashion MNIST datasets. The problem is a
multi-class classification problem on these datasets.
To do this, we use the usual method of softmax classification, which is a generalisation
of logistic regression to multiple classes. We train a simple neural network whose output
is a probability distribution a = (a1, · · · , a10) on the 10 labels. Each coordinate of a
represents the probability that a given input has that particular label. The loss function
we used is the standard cross entropy loss using one-hot encoding of the labels. So, if
(x, y) is a datapoint, with y = (y1, ..., y10) being the one-hot encoding of x’s label, then

L(x,y)(a) = −
10∑
k=1

yi log(ai)

2.2.2 Experiment on MNIST. For the MNIST dataset, our neural network was a
simple 4 layered netword. The first three layers had 128 nodes each (with the identity

4

2 Convergence Guarantees and Experiments

activation), and the last layer had 10 nodes with softmax activation. Both Adam and
AdaGrad were trained on MNIST with 10 iterations and batch size of 128.
Adam was trained with α = 0.001 (learning rate), β1 = 0.9, β2 = 0.999 and ϵ = 10−7.
AdaGrad was trained with learning rate α = 0.001 and ϵ = 10−7. Over the 10 iterations,
the accuracies were as follows (look at the table).

T Adam AdaGrad
1 0.8899 0.6364
2 0.9143 0.8318
3 0.9160 0.8602
4 0.9199 0.8751
5 0.9195 0.8836
6 0.9196 0.8889
7 0.9207 0.8935
8 0.9221 0.8963
9 0.9223 0.8982
10 0.9228 0.9000

2.2.3 Experiment on Fashion MNIST. For confirmation, we tried the same exper-
iment on the Fashion MNIST dataset as well. Here, we chose an even simpler network:
a two layered network, in which the first layer had 128 nodes with ReLu activation, and
the second (and last) layer had 10 nodes with softmax activation. The hyperparameters
were the same. The training was done for T = 50 steps. And again, Adam outperformed
AdaGrad. After 50 iterations, Adam ended up with an accuracy of 0.9606, while AdaGrad
ended up with an accuracy of just 0.8434.

2.2.4 Code. The notebooks for the tests are available at this link: https://github.
com/codetalker7/adam-vs-adagrad. Look at main-test.ipynb for the first test, and
main-test-fashion-mnist.ipynb for the second test.

5

https://github.com/codetalker7/adam-vs-adagrad
https://github.com/codetalker7/adam-vs-adagrad

	Introduction
	Overview
	Moving Averages.
	Momentum and adaptive step sizes.

	Algorithm and Pseudocode
	Algorithm Description.
	Bias Corrections.

	Convergence Guarantees and Experiments
	Bound on Regret
	The OCO setting.

	Experiment: A comparison with AdaGrad
	Overview of the experiment.
	Experiment on MNIST.
	Experiment on Fashion MNIST.
	Code.

