
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Adam (Adaptive Moment Estimation)

Siddhant Chaudhary

CMI, October 2021

Siddhant Chaudhary Adam (Adaptive Moment Estimation)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Moving Averages
Suppose {a1, a2, a3, ...} is some sequence. For each time
step t, we want to determine the moving average of this
sequence.

Let β be some positive number. We will call β the
decaying factor.
Define the sequence At by the following recursive formula.

A1 = a1

At = βAt−1 + (1− β)at

This is also called an exponential decay moving average;
very old terms of the sequence are given exponentially
small weight.

Siddhant Chaudhary Adam (Adaptive Moment Estimation)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Moving Averages
Suppose {a1, a2, a3, ...} is some sequence. For each time
step t, we want to determine the moving average of this
sequence.
Let β be some positive number. We will call β the
decaying factor.

Define the sequence At by the following recursive formula.

A1 = a1

At = βAt−1 + (1− β)at

This is also called an exponential decay moving average;
very old terms of the sequence are given exponentially
small weight.

Siddhant Chaudhary Adam (Adaptive Moment Estimation)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Moving Averages
Suppose {a1, a2, a3, ...} is some sequence. For each time
step t, we want to determine the moving average of this
sequence.
Let β be some positive number. We will call β the
decaying factor.
Define the sequence At by the following recursive formula.

A1 = a1

At = βAt−1 + (1− β)at

This is also called an exponential decay moving average;
very old terms of the sequence are given exponentially
small weight.

Siddhant Chaudhary Adam (Adaptive Moment Estimation)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Moving Averages
Suppose {a1, a2, a3, ...} is some sequence. For each time
step t, we want to determine the moving average of this
sequence.
Let β be some positive number. We will call β the
decaying factor.
Define the sequence At by the following recursive formula.

A1 = a1

At = βAt−1 + (1− β)at

This is also called an exponential decay moving average;
very old terms of the sequence are given exponentially
small weight.

Siddhant Chaudhary Adam (Adaptive Moment Estimation)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Adam: Adaptive Moment Estimation
Adam is an optimized version of minibatch gradient
descent.

Uses adaptive step sizes to do gradient descent; very
useful for training neural networks.
Combines the ideas of momentum and adaptive weights.
Adam has become the default method for many neural
network packages these days!
Easy to implement and very efficient, and magnitudes of
parameter updates are invariant to scaling of the gradient.

Siddhant Chaudhary Adam (Adaptive Moment Estimation)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Adam: Adaptive Moment Estimation
Adam is an optimized version of minibatch gradient
descent.
Uses adaptive step sizes to do gradient descent; very
useful for training neural networks.

Combines the ideas of momentum and adaptive weights.
Adam has become the default method for many neural
network packages these days!
Easy to implement and very efficient, and magnitudes of
parameter updates are invariant to scaling of the gradient.

Siddhant Chaudhary Adam (Adaptive Moment Estimation)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Adam: Adaptive Moment Estimation
Adam is an optimized version of minibatch gradient
descent.
Uses adaptive step sizes to do gradient descent; very
useful for training neural networks.
Combines the ideas of momentum and adaptive weights.

Adam has become the default method for many neural
network packages these days!
Easy to implement and very efficient, and magnitudes of
parameter updates are invariant to scaling of the gradient.

Siddhant Chaudhary Adam (Adaptive Moment Estimation)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Adam: Adaptive Moment Estimation
Adam is an optimized version of minibatch gradient
descent.
Uses adaptive step sizes to do gradient descent; very
useful for training neural networks.
Combines the ideas of momentum and adaptive weights.
Adam has become the default method for many neural
network packages these days!

Easy to implement and very efficient, and magnitudes of
parameter updates are invariant to scaling of the gradient.

Siddhant Chaudhary Adam (Adaptive Moment Estimation)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Adam: Adaptive Moment Estimation
Adam is an optimized version of minibatch gradient
descent.
Uses adaptive step sizes to do gradient descent; very
useful for training neural networks.
Combines the ideas of momentum and adaptive weights.
Adam has become the default method for many neural
network packages these days!
Easy to implement and very efficient, and magnitudes of
parameter updates are invariant to scaling of the gradient.

Siddhant Chaudhary Adam (Adaptive Moment Estimation)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Algorithm
Let f(θ) be the cost function we want to optimize, where
the parameters are θ.

f will be stochastic if we are doing minibatch/stochastic
gradient descent. At time step t, we will assume that the
function is ft.
θ0 : Our initial parameter vector.
We set m0 = 0 and v0 = 0 (these are vectors of the same
dimension as that of the gradients of f). Also, t = 0 (the
initial time step).
At time t, we set the following.

mt ← β1mt−1 + (1− β1)gt

vt ← β2vt−1 + (1− β2)g2
t

Siddhant Chaudhary Adam (Adaptive Moment Estimation)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Algorithm
Let f(θ) be the cost function we want to optimize, where
the parameters are θ.
f will be stochastic if we are doing minibatch/stochastic
gradient descent. At time step t, we will assume that the
function is ft.

θ0 : Our initial parameter vector.
We set m0 = 0 and v0 = 0 (these are vectors of the same
dimension as that of the gradients of f). Also, t = 0 (the
initial time step).
At time t, we set the following.

mt ← β1mt−1 + (1− β1)gt

vt ← β2vt−1 + (1− β2)g2
t

Siddhant Chaudhary Adam (Adaptive Moment Estimation)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Algorithm
Let f(θ) be the cost function we want to optimize, where
the parameters are θ.
f will be stochastic if we are doing minibatch/stochastic
gradient descent. At time step t, we will assume that the
function is ft.
θ0 : Our initial parameter vector.

We set m0 = 0 and v0 = 0 (these are vectors of the same
dimension as that of the gradients of f). Also, t = 0 (the
initial time step).
At time t, we set the following.

mt ← β1mt−1 + (1− β1)gt

vt ← β2vt−1 + (1− β2)g2
t

Siddhant Chaudhary Adam (Adaptive Moment Estimation)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Algorithm
Let f(θ) be the cost function we want to optimize, where
the parameters are θ.
f will be stochastic if we are doing minibatch/stochastic
gradient descent. At time step t, we will assume that the
function is ft.
θ0 : Our initial parameter vector.
We set m0 = 0 and v0 = 0 (these are vectors of the same
dimension as that of the gradients of f). Also, t = 0 (the
initial time step).

At time t, we set the following.

mt ← β1mt−1 + (1− β1)gt

vt ← β2vt−1 + (1− β2)g2
t

Siddhant Chaudhary Adam (Adaptive Moment Estimation)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The Algorithm
Let f(θ) be the cost function we want to optimize, where
the parameters are θ.
f will be stochastic if we are doing minibatch/stochastic
gradient descent. At time step t, we will assume that the
function is ft.
θ0 : Our initial parameter vector.
We set m0 = 0 and v0 = 0 (these are vectors of the same
dimension as that of the gradients of f). Also, t = 0 (the
initial time step).
At time t, we set the following.

mt ← β1mt−1 + (1− β1)gt

vt ← β2vt−1 + (1− β2)g2
t

Siddhant Chaudhary Adam (Adaptive Moment Estimation)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

(contd.)
Here, gt is the gradient at time step t, i.e gt = ∇θft(θt−1)
and the quantity g2

t = gt ⊙ gt denotes the coordinate-wise
product.

So, mt and vt respectively are estimates of first and
second moments of gt respectively.
But there’s a problem: initialization to 0 leads to a bias
towards zero, i.e the quantities mt and vt will initially be
small in magnitude.
Not a problem, as there are bias corrected estimates (we
will see how these estimates come about).

m̂t ←
mt

(1− βt
1)

v̂t ←
vt

(1− βt
2)

Siddhant Chaudhary Adam (Adaptive Moment Estimation)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

(contd.)
Here, gt is the gradient at time step t, i.e gt = ∇θft(θt−1)
and the quantity g2

t = gt ⊙ gt denotes the coordinate-wise
product.
So, mt and vt respectively are estimates of first and
second moments of gt respectively.

But there’s a problem: initialization to 0 leads to a bias
towards zero, i.e the quantities mt and vt will initially be
small in magnitude.
Not a problem, as there are bias corrected estimates (we
will see how these estimates come about).

m̂t ←
mt

(1− βt
1)

v̂t ←
vt

(1− βt
2)

Siddhant Chaudhary Adam (Adaptive Moment Estimation)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

(contd.)
Here, gt is the gradient at time step t, i.e gt = ∇θft(θt−1)
and the quantity g2

t = gt ⊙ gt denotes the coordinate-wise
product.
So, mt and vt respectively are estimates of first and
second moments of gt respectively.
But there’s a problem: initialization to 0 leads to a bias
towards zero, i.e the quantities mt and vt will initially be
small in magnitude.

Not a problem, as there are bias corrected estimates (we
will see how these estimates come about).

m̂t ←
mt

(1− βt
1)

v̂t ←
vt

(1− βt
2)

Siddhant Chaudhary Adam (Adaptive Moment Estimation)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

(contd.)
Here, gt is the gradient at time step t, i.e gt = ∇θft(θt−1)
and the quantity g2

t = gt ⊙ gt denotes the coordinate-wise
product.
So, mt and vt respectively are estimates of first and
second moments of gt respectively.
But there’s a problem: initialization to 0 leads to a bias
towards zero, i.e the quantities mt and vt will initially be
small in magnitude.
Not a problem, as there are bias corrected estimates (we
will see how these estimates come about).

m̂t ←
mt

(1− βt
1)

v̂t ←
vt

(1− βt
2)

Siddhant Chaudhary Adam (Adaptive Moment Estimation)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

(contd.)
Finally, we do the parameter update.

θt ← θt−1 − α · m̂t√
v̂t + ϵ

Note that the step sizes are different for each coordinate!
Adam uses ideas from two techniques: momentum and
adadelta.
Momentum ensures that when we are doing stochastic
GD, by taking the whole history of gradients into account
(moving averages), the current update will not jump
around.
Adadelta does the following: if the magnitude of gradient
is large, we want to take small steps; if the magnitude is
small, we want to take large steps.

Siddhant Chaudhary Adam (Adaptive Moment Estimation)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

(contd.)
Finally, we do the parameter update.

θt ← θt−1 − α · m̂t√
v̂t + ϵ

Note that the step sizes are different for each coordinate!

Adam uses ideas from two techniques: momentum and
adadelta.
Momentum ensures that when we are doing stochastic
GD, by taking the whole history of gradients into account
(moving averages), the current update will not jump
around.
Adadelta does the following: if the magnitude of gradient
is large, we want to take small steps; if the magnitude is
small, we want to take large steps.

Siddhant Chaudhary Adam (Adaptive Moment Estimation)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

(contd.)
Finally, we do the parameter update.

θt ← θt−1 − α · m̂t√
v̂t + ϵ

Note that the step sizes are different for each coordinate!
Adam uses ideas from two techniques: momentum and
adadelta.

Momentum ensures that when we are doing stochastic
GD, by taking the whole history of gradients into account
(moving averages), the current update will not jump
around.
Adadelta does the following: if the magnitude of gradient
is large, we want to take small steps; if the magnitude is
small, we want to take large steps.

Siddhant Chaudhary Adam (Adaptive Moment Estimation)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

(contd.)
Finally, we do the parameter update.

θt ← θt−1 − α · m̂t√
v̂t + ϵ

Note that the step sizes are different for each coordinate!
Adam uses ideas from two techniques: momentum and
adadelta.
Momentum ensures that when we are doing stochastic
GD, by taking the whole history of gradients into account
(moving averages), the current update will not jump
around.

Adadelta does the following: if the magnitude of gradient
is large, we want to take small steps; if the magnitude is
small, we want to take large steps.

Siddhant Chaudhary Adam (Adaptive Moment Estimation)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

(contd.)
Finally, we do the parameter update.

θt ← θt−1 − α · m̂t√
v̂t + ϵ

Note that the step sizes are different for each coordinate!
Adam uses ideas from two techniques: momentum and
adadelta.
Momentum ensures that when we are doing stochastic
GD, by taking the whole history of gradients into account
(moving averages), the current update will not jump
around.
Adadelta does the following: if the magnitude of gradient
is large, we want to take small steps; if the magnitude is
small, we want to take large steps.

Siddhant Chaudhary Adam (Adaptive Moment Estimation)



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Pseudocode
1: Input: α and β1, β2 ∈ [0, 1).
2: Required: f(θ) (objective) and θ0 (initial parameter)
3: m0 ← 0
4: v0 ← 0
5: t← 0
6: while (some convergence critrion on θt) do
7: t← t + 1
8: gt ← ∇θft(θt−1)
9: mt ← β1mt−1 + (1− β1)gt

10: vt ← β2vt−1 + (1− β2)g2
t

11: m̂t ← mt/(1− βt
1)

12: v̂t ← vt/(1− βt
2)

13: θt ← θt−1 − αm̂t/(
√

v̂t + ϵ)
14: end while

Siddhant Chaudhary Adam (Adaptive Moment Estimation)


