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Recall
1: Input: α and β1, β2 ∈ [0, 1).
2: Required: f(θ) (objective) and θ0 (initial parameter)
3: m0 ← 0
4: v0 ← 0
5: t← 0
6: while (some convergence criterion on θt) do
7: t← t + 1
8: gt ← ∇θft(θt−1)
9: mt ← β1mt−1 + (1− β1)gt

10: vt ← β2vt−1 + (1− β2)g2
t

11: m̂t ← mt/(1− βt
1)

12: v̂t ← vt/(1− βt
2)

13: θt ← θt−1 − αm̂t/(
√

v̂t + ϵ)
14: end while
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Deriving bias corrections
Suppose g1, ..., gT are the gradients obtained at the time
steps; for simplicity assume that each gt is obtained from
the same distribution, i.e

E [gi] = E [gj]

for all 1 ≤ i, j ≤ T.

Expanding the recurrence vt = β2vt−1 + (1− β2)g2
t with

the condition v0 = 0, we have the following.

vt = (1− β2)
t∑

i=1
βt−i

2 g2
i

We want E [vt] to be equal to E
[
g2

t
]

(the true second
moment).
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(contd.)
Taking expected values of both sides, we get the
following.

E [vt] = (1− β2)
t∑

i=1
βt−i

2 E
[
g2

i
]

= E
[
g2

t
]
· (1− β2)

t∑
i=1

βt−i
2

= E
[
g2

t
]
(1− βt

2)

So, dividing out by (1− βt
2) does the job.

Even if the gts are not sampled from the same
distribution, β2 is chosen such that the weights assigned
to gradients too far in the past are small.
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Convergence Guarantees
Adam provides guarantees on regret, which is defined in
the online convex optimization framework. Over a time
T, the regret is defined as follows.

R(T) =
T∑

t=1
ft(θt)− inf

θ∗

T∑
t=1

ft(θ∗)

Adam has a sublinear regret bound under the following
conditions.

Bounded gradients: ||∇ft(θ)||2 ≤ G, ||∇ft(θ)||∞ ≤ G∞
for all θ.
||θi − θj||2 ≤ D, ||θi − θj||∞ ≤ D∞ for all i, j ∈ [T].
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(contd.)
(list contd.)

β1, β2 ∈ [0, 1] satisfy β2
1 <
√
β2.

Step sizes: αt =
α√

t .
β1,t = β1λt−1 for some λ ∈ (0, 1), i.e the first moment
averaging coefficient decays exponentially.

Under the above conditions, Adam has O(dG∞
√

T)
regret bound, where d = dimension of the data space.
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Experiment: Fashion MNIST and MNIST
We compare the performance of Adam and AdaGrad in
terms of the convergence in training accuracies on the
MNIST and Fashion MNIST datasets.

For this, we will use softmax classification; our output will
be a probability distribution a = (a1, ..., a10), each
coordinate indicating the likelihood of the sample
belonging to a class.
Loss function: cross entropy loss. Given a data point
(x, y) where y = (y1, ..., y10) is a one-hot encoding of the
label,

Loss(x,y)(a) = −
10∑

k=1
yi log(ai)
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4 Layer NN for MNIST
For the MNIST dataset, our neural network is 4 layered:
the first three layers have 128 nodes each (with no
activation) and the last layer has 10 nodes with softmax
activation. Both Adam and AdaGrad were trained with
10 iterations and batch size 128.

Adam was trained with α = 0.001 (learning rate),
β1 = 0.9, β2 = 0.999 and ϵ = 10−7. These values seem
to be the sweet spot (as claimed by the authors).
AdaGrad was trained with learning rate = 0.001 and
ϵ = 10−7.
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the first three layers have 128 nodes each (with no
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activation. Both Adam and AdaGrad were trained with
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Accuracies

T Adam Adagrad
1 0.8899 0.6364
2 0.9143 0.8318
3 0.9160 0.8602
4 0.9199 0.8751
5 0.9195 0.8836
6 0.9196 0.8889
7 0.9207 0.8935
8 0.9221 0.8963
9 0.9223 0.8982
10 0.9228 0.9000
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2 Layer NN for Fashion MNIST
1 We did the same thing for the Fashion MNIST dataset:

in this case we have a 2 layered neural network, in which
the first layer had 128 nodes with ReLu activation, and
the second layer had 10 nodes with softmax activation.
The hyperparameters were the same.

2 We trained the networks for T = 50 timesteps.
3 Again, Adam was much better than AdaGrad: after 50

iterations, Adam ended up with an accuracy of 0.9606,
while AdaGrad ended up with an accuracy of just 0.8434!
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